
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 8-1-2014

IMPROVING PREFERENCE
RECOMMENDATION AND
CUSTOMIZATION IN REAL WORLD
HIGHLY CONFIGURABLE SOFTWARE
SYSTEMS
Dongpu Jin
University of Nebraska-Lincoln, djin@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Jin, Dongpu, "IMPROVING PREFERENCE RECOMMENDATION AND CUSTOMIZATION IN REAL WORLD HIGHLY
CONFIGURABLE SOFTWARE SYSTEMS" (2014). Computer Science and Engineering: Theses, Dissertations, and Student Research.
84.
http://digitalcommons.unl.edu/computerscidiss/84

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/84?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

IMPROVING PREFERENCE RECOMMENDATION AND CUSTOMIZATION IN

REAL WORLD HIGHLY CONFIGURABLE SOFTWARE SYSTEMS

by

Dongpu Jin

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Myra B. Cohen

Lincoln, Nebraska

August, 2014

www.manaraa.com

IMPROVING PREFERENCE RECOMMENDATION AND CUSTOMIZATION IN

REAL WORLD HIGHLY CONFIGURABLE SOFTWARE SYSTEMS

Dongpu Jin, M.S.

University of Nebraska, 2014

Adviser: Myra B. Cohen

Highly configurable software systems, such as web browsers or office applications, may

have a large number of preferences that the user can customize. When faced with the task

of trying to identify which configuration option should be modified to change a particular

system behavior, the user, tester or debugger may have to search through hundreds or thou-

sands of options, and documentation may be scarce. Simple pattern matching utilities exist,

but these searches are sensitive to using the right keyword. Static analysis may help, but

will require access to source code. Alternatively a user may ask questions on help forums,

but this can takes hours, days or even weeks to obtain a solution.

In this thesis we begin by analyzing two open-source and one industrial application to

understand the complexity of their configuration subsystems. We find that all applications

are multi-lingual, that there are multiple access points and methods to modify configura-

tions, and only a subset of preferences are provided through the use of a menu option.

These results suggest the need for new recommendation and customization approaches.

We then present PrefFinder, an automated framework that uses natural language process-

ing and information retrieval to search for preferences. The input is a query in natural

language and the result is a rank ordered list of the potential options, and an update mecha-

nism that allows the user to directly change the found preference at run time. We instantiate

PrefFinder as a plugin for Firefox and evaluate several variants of our parsing algorithms

to improve matches in this context. On 100 queries obtained from an online forum, we

www.manaraa.com

determine that using a backward search during word splitting, combined with a synonym

database, achieves the best retrieval results. The correct configuration option is found 50

percent of the time within the top 20 choices, and 73 percent of the time overall. In a com-

parison against a standard web search, we show that PrefFinder is competitive in finding

the answer, but at a potentially lower cost.

www.manaraa.com

iv

ACKNOWLEDGMENTS

Firstly, I would like to give my thanks to my adviser Dr. Myra Cohen. I really enjoyed

working with her throughout the two-year master program. Her guidance played an im-

portant role in helping my research, thesis, coursework, study, and internship. By working

under her supervision, I learned not only tremendous amount of major specific knowledge,

but also very essential soft skills such as communication, academic writing, interpersonal,

and the rigorous academic attitudes. I really appreciate her patient and kindly personality,

which makes the two-year research experience really motivated, productive, and enjoyable.

Secondly, I would like to give my appreciations to my parents, whose endless love

and support have become the strongest source of my energy and helped me persesvere and

continuously move forward. I believe the sacrifice of not being together with my family

would eventually pay off as I successfully complete my master degree.

Last but not the least, I would like to thank my committee members who spending time

reading this thesis, attending my defense, and providing valuable feedback. I would also

like to give my thanks to the professors, students, researchers, and staff in the e2 lab and

computer science department, who are all wonderful individuals that provided me with

tremendous guidance and help, which made this a really wonderful journey.

This work was supported in part by the National Science Foundation grant #CCF1161767,

CNS #1205472 and the Air Force Office of Scientific Research award #FA9550-10-1-0406.

www.manaraa.com

v

Contents

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background and Related Work 6

2.1 Background . 6

2.1.1 Configurable Software Systems 6

2.1.2 Natural Language Processing and Information Retrieval 11

2.2 Related Work . 12

3 An Analysis of Configurability in Real World Systems 15

3.1 Motivation . 15

3.2 Case Study . 16

3.2.1 Software Subjects Studied . 17

3.2.2 Study Design . 17

3.2.3 Threats to Validity . 19

3.3 Study Results . 20

www.manaraa.com

vi

3.3.1 RQ1 Configuration Complexity 21

3.3.1.1 Additional Complexity for ABBc 22

3.3.2 RQ2 Configuration Access . 24

3.3.3 RQ3 Configuration Synchronization 30

3.4 Discussion . 34

3.5 Summary . 36

4 PrefFinder 37

4.1 Overview . 37

4.1.1 Application View . 38

4.1.2 Parser . 39

4.1.3 Preference Name Parsing . 39

4.1.3.1 Camel Case Splitting . 41

4.1.3.2 Same Case Splitting . 42

4.1.4 Query Parsing . 45

4.1.5 Ranker . 46

4.2 Case Study . 48

4.2.1 Object of Analysis . 48

4.2.2 Study Setup and Method: RQ1 . 49

4.2.3 Study Setup and Method: RQ2 . 50

4.2.4 Threats to Validity . 53

4.3 Results . 53

4.3.1 RQ1 Identifier Splitting . 53

4.3.2 RQ2 PrefFinder Suggestions . 56

4.4 Summary . 59

5 Conclusions and Future Work 63

www.manaraa.com

vii

Bibliography 65

www.manaraa.com

viii

List of Figures

1.1 Firefox about:config utility. 4

2.1 Configuration-Aware Testing and Debugging: Expected Use Case 8

2.2 General View of Configuration Layers . 9

3.1 Example of ABBc Preference File . 23

3.2 Firefox Configuration Structural Diagram . 26

3.3 Firefox and LibreOffice Lifecycle Diagram 31

3.4 ABBc Lifecycle Diagram . 33

4.1 PrefFinder framework architecture . 38

4.2 PrefFinder prototype user interface . 38

4.3 Total number of returned suggestions (left) and the associated ranking positions

(right) for the successful queries . 56

4.4 Rank positions for successful queries . 58

4.5 PrefFinder vs. a web query . 59

www.manaraa.com

ix

List of Tables

3.1 Quantifying number of preference files and preferences of ABBc, Firefox and

LibreOffice . 20

3.2 Categorization of configuration space for ABBc and Firefox. The total number

of preferences are shown as cn where c is the cardinality of the preference

(number of values) and n is the number of times we have this cardinality). We

have combined like cardinalities together therefore the total boolean values for

example may include some from the others category 20

3.3 Categorization of the configuration space for LibreOffice broken down by module 20

3.4 Number of options grouped by categories in ABBc 23

3.5 Number of configurations accessible at different layers 29

4.1 Ranking the terms in the correct preference for our example query 47

4.2 Preferences and identifier oracle for Firefox 20.0 49

4.3 Sample of queries from the Firefox help forum 52

4.4 Examples of the results of the different splitting algorithms 61

4.5 Results of splitting on the 567 identifiers which should be split 62

4.6 Comparing splitting quality against the human oracle on all distinct identifiers . 62

4.7 Time to split 1594 distinct identifiers (top) and to extract synonyms from Word-

Net for 100 user queries (bottom) . 62

www.manaraa.com

1

Chapter 1

Introduction

Many software systems are highly-configurable, allowing the user to customize an individ-

ual instance of the program while retaining a core set of functionality. Users can customize

a program’s behavior by specifying option settings for a large number of preferences (often

in the hundreds or thousands). During development, maintenance and testing, engineers

will also manipulate the preferences to ensure that correct behavior occurs under a wide

range of user profiles. This customizability provides benefit to the end-user, however, it

also introduces many challenges during testing and/or debugging, because configurability

complicates the process of finding and/or reproducing the failure. Research has shown that

different instances of a highly-configurable system will behave differently while running

under the same set of test cases [8, 39, 55]. For instance, in the work of Qu et al. [39],

as many as 80% of the faults had the potential to go undetected if tested under certain

configurations. Therefore, configuration-aware testing techniques have been proposed, to

systematically explore the configuration space [39, 55]. During debugging, configurations

are also important. Knowing the exact configuration instance that a user was in when the

failure occurred can help with reproducibility. Bettenburg et al. [2] found that there is a

strong mismatch in bug reports between what developers need to reproduce and fix a bug,

www.manaraa.com

2

and that which is provided by users. Other studies have also shown that bug reports lack

information needed for bug reproduction [4]. Although there has been some work aimed at

reproducing field failures such as that of Jin and Orso and Clause and Orso [5, 24], it does

not explicitly consider the configuration at the time of failure.

Given the complexity of today’s software systems, determining the configuration space

may not be a trivial task. For instance, in the industrial system studied in Qu et al. [42],

they reported that there are more than 500 configuration options that their users can modify.

Firefox, the open source web browser has over 1,900 configuration options available to a

user. The space of possible unique configurations grows exponentially with the number of

configuration options (also called preferences in this work), therefore we can only evaluate

a representative sample of all possible configurations. Research in testing and maintenance

of configurable software has focused on ways to sample this large configuration space for

testing [14, 51], or to prioritize these samples to improve efficiency during maintenance

[40]. Rabkin and Katz highlight the lack of documentation on which configuration options

exist, and on what the valid value domains are for each of those options. [44]. They have

developed a static analysis technique that reverse engineers the configuration options from

code [44]. In follow on work, they have proposed methods to diagnose possible errors

found during configurability [43], and Xiong et al. have developed a symbolic technique

to provide fixes when configuration constraints are violated [54]. Zhang and Ernst have

developed another analysis to identify which configuration option causes a failure [57] or

has caused the system behavior to change in an undesirable way [58] due to evolution.

However, if users and developers (or testers) want to interact with a configurable sys-

tem, during use or maintenance, these systems may be lacking. They may know of a desired

behavior, or be familiar only with a descriptive menu name for a specific configuration op-

tion, but there is no way to query most systems to map these human readable preferences to

code-level names. For instance, if a developer knows that a preference on the menu option

www.manaraa.com

3

is called Always show the tab bar, they may not be able to quickly determine what the real

preference name is, but that is necessary if one wants to set this automatically via a utility

function or by directly modifying a preference file. In this case, the preference is called

browser.tabs.autoHide. While this particular option can also be set by the menu, making it

seem trivial, some can only be manipulated in other ways.

Consider for example, the browser.backspace action, found in Firefox. This allows

the user to control how the browser will behave when using the backspace key. There is

no menu setting for this option, yet a sophisticated user and/or a developer may want to

modify its settings. Luckily in this scenario, Firefox provides a utility, about:config

(see Figure 1.1), that uses a regular expression search to find matching options. If the

user happens to search for backspace using this utility, they will find this option and be

able to modify its settings. However, if instead they decide to search for back space or

spacebar, nothing will be returned. Browsing through all options in about:config

will be difficult, since there are almost 1900 options in the current version. If the user is

working on a system like LibreOffice, they have a directory with many subdirectories to

search in order to find the possible options. Instead, we would like to use natural language

to describe the behavior and find the options another way.

In this thesis we first uncover and quantify the extent to which these problems exist

on an industrial scale and then address the configurability problems through an automated

preference finder suggestion framework, that we call PrefFinder. To achieve the first goal,

we empirically examine several large highly-configurable applications to understand the

implications for testing and debugging in practice. We study one industrial application

and two widely used open source applications. We quantify the size of the configuration

space and evaluate where and if the ground truth for the configuration model exists. We

also examine how a user, tester or maintenance engineer can manipulate the configura-

tion options. Finally, we examine the runtime factors involved in capturing the current

www.manaraa.com

4

Figure 1.1: Firefox about:config utility.

configuration space. Our study shows, somewhat surprisingly, that both the industrial and

open source applications have elements of configurability in common, which leads to a set

of lessons learned and a roadmap for developing configuration-aware testing and debug-

ging tools. We see this study as a way to share with practitioners the issues configurability

brings, and a springboard to accurate and usable configuration-aware testing and debugging

techniques.

To address the second goal of preference recommendation and customization of real

world highly configurable software systems, we built PrefFinder, an automated framework

that uses natural language processing and information retrieval to help locate the desired

preferences. The input is a query in natural language. PrefFinder first parses both the

preferences and the user query, informed by dictionaries and lexical databases. The queries

and preferences are then matched and ranked and returned to the user along with current

www.manaraa.com

5

values and brief preference descriptions if exists. We have built a prototype of PrefFinder

for Firefox browser as a plugin. In experiments on a set of 100 real user queries on Firefox

browser, we show that PrefFinder finds the correct preference 73 percent of the time overall

and 50 percent of the time within the top 20 choices.

The contributions of this thesis are:

1. An abstraction of the general structure of configuration manipulation in modern soft-

ware systems;

2. A case study that quantifies the complexity of three modern highly configurable soft-

ware systems and a set of lessons learned that will help practitioners to better un-

derstand and control configuration instances for software engineering tasks such as

testing and debugging;

3. PrefFinder: A framework to provide interactive querying of configurable options in

natural language;

4. A prototype PrefFinder implementation for the Firefox web browser; and

5. A case study on 100 user queries evaluating the effectiveness of our various splitting

algorithms and PrefFinder. itself

The rest of this thesis is structured as follows. In the next chapter we present the back-

ground and related work. In Chapter 3 we present an analysis of configuration on real

software systems. We then present PrefFinder in Chapter 4. We conclude and present

future directions in Chapter 5.

www.manaraa.com

6

Chapter 2

Background and Related Work

We begin with a discussion of configurability and then present background on natural lan-

guage processing. We end with related work.

2.1 Background

2.1.1 Configurable Software Systems

A configurable system is a software system with a core set of functionality and a set of vari-

able features which are defined by a set of configuration options (or preferences). Changes

to the value of a preference changes the program’s behavior in some way. For instance,

Firefox, a popular web browser, is a highly-configurable system and one that we use to

motivate some of the problems that we have encountered. In Firefox, an example configu-

ration option that can be set via the option menu is called Warn me when closing multiple

tabs. This is a Boolean configuration with two values, {true, false}. Its default value is set

to true which means that if you try to close a window when multiple tabs are open, you

will get a warning asking if you want to close all of the tabs. If you uncheck this on the

menu (set it to false) it will prevent a warning from being produced and immediately close

www.manaraa.com

7

the window. The actual preference name for this (found in the preference file) is called

browser.tabs.warnOnClose. There is another closely related preference in the preference

files called browser.tabs.warnOnCloseOtherTabs which is set to true by default, but has no

menu counterpart. When testing the system, or when a failure occurs, we need to have

information about the values that were selected for each of these configuration options,

something that may not be obvious by examining just the menu alone.

We assume an idealized use case for testing and debugging as shown in Figure 2.1. In

this scenario we have three entities that interact with the configurable system. The end-user

can modify configurations and will send bug reports to (and possibly read reports from)

customer support. As can be seen in the figure, he or she may use the menu, or they can

directly write to configuration files. A set of configuration-aware techniques and tools sit

between the application and the tester and maintenance engineer, which feed information

about configurations back to the bug reporting/customer support system. The challenge

is to enable these configuration-aware techniques. We have identified three important re-

quirements. We need

1. a Model of the possible configuration space. In order to sample the configuration

space for testing or debugging, the configuration model needs to be known.

2. to Know the Mapping of the configuration space to programmatic elements. This

is required in order to understand the impact a configurable item can have, and to

automate the modification of configurations for testing and bug reproduction.

3. an Accurate Configuration Snapshot to provide the full state of the application

when a bug is encountered.

www.manaraa.com

8

!!!!!!!!!!!!

End- User !!!!!!!!!!!!

Maintenance
Engineer

applica&on)

configura)on*
environment*

configura*on+aware!
techniques!
and!tools!!!!!!!!!!!!!

Test
Engineer

bug)report)
customer)support)

Figure 2.1: Configuration-Aware Testing and Debugging: Expected Use Case

We examine each of these requirements in relation to the existing work. Configuration-

aware testing techniques [7, 14, 39] propose various methods to sample and prioritize the

configuration space for testing, but all of this work assumes that the configuration model

is known (or is somehow extracted from the code). Based on our informal examination

of systems like Firefox, we do not believe that this can be easily achieved. First, we have

discovered that the configuration control is not found within a single location of the code

or in specific external files. In fact, most of the systems we have studied have a multi-

tiered layout of how configurations are defined and accessed and this can be done both

offline and at run time. Figure 2.2 shows a schema that seems to cover most of the systems

we have studied. First, there is a static view of the system (labeled #1). This includes

any existing user manuals, web pages, etc. that contain documentation on the possible

configuration options and their values. This often is incomplete or out of date. The second

static element is the source code itself. This contains the ground truth, but source code may

not be available to everyone who wants and needs to understand the configuration model.

Moreover, as we shall see, using this to extract the full configuration space is non-trivial.

When controlling what configurations are set, there are usually external mechanisms

www.manaraa.com

9

(#2 in Figure 2.2) such as preference files or databases. These can often be accessed inde-

pendently of the program (even while it is running) and therefore may or may not contain

the current state of the configurations. We have also seen that these may not contain the

ground truth of the configuration space.

Finally, as is shown in #3, there are usually some runtime access mechanisms that

connect to the internal data structures (or database). For instance, most programs have a

menu system that allows the user to set preferences, but in the systems we have studied this

accounts for only a subset of the full set of configurations. Other specialty tools exist such

as the about:config mechanism of Firefox, that allows one to pull up a web page where

configurations can be modified dynamically. Again, these may not show the complete set of

configuration options that are available. There may also be an API to allow programmatic

access to an internal memory structure (such as the hash table in Firefox). This should be

the ground truth of what preferences are set at any point in time, but it will not contain the

hidden preferences.

Static View

Runtime Access
User%Manual%

Preference%Menu%%

External Control

Preference%Files%

Source%
Code%

Database%or%
Memory%

1
Database%

Specialty%Tools%

2

3

Figure 2.2: General View of Configuration Layers

Suppose instead of using the menus or preference files, we want to extract the prefer-

ences from the code itself, which also helps to build a mapping between the configuration

www.manaraa.com

10

space and code. Rabkin et al. [45, 46] presented techniques to statically analyze Java pro-

grams with JChord. However, upon studying their work in more detail, we find that it does

not directly apply to a system like Firefox. First, it assumes a single programming language

(Java); second, they assume that all of the preference manipulation code exists as (name,

value) pairs and is found in a single class; and finally, they assume that configuration ma-

nipulation methods start with get or set.

As shall see, these assumptions do not hold for any of the applications we studied. For

instance, there are cases in Firefox where the preference code includes JavaScript and other

languages such as the markup language XUL. We see instances where the Javascript API is

able to query and update a preference, however, it uses the XUL code as a reference to the

given preference name (binding it to a user interface element). We also see preference code

that is not using the (name, value) pair mechanism but instead uses references, macros, or

member fields to refer to the preference name. Another issue that we have encountered is

that the API method names of Firefox do not always start with get or set. We need more

intelligence if we plan to extract all of these configuration options from the code.

Finally, if we are concerned with knowing the current state of the configuration space at

some point in time, we need a technique that captures an accurate configuration snapshot

at runtime. Indeed it may not be straightforward to get this information from the system. In

some of the applications we have studied (Firefox and LibreOffice), when the user modifies

a preference value dynamically through the option menu, the change is reflected immedi-

ately in the dynamic memory and preference files. However, in our industrial application,

the change made by the user will be stored temporarily shutdown and the new preference

will take place on the next startup. Therefore the running configuration and the one re-

flected in the persistent memory after the application closes may be inconsistent.

www.manaraa.com

11

2.1.2 Natural Language Processing and Information Retrieval

In Chapter 4, we present PrefFinder, a natural language based querying framework to iden-

tify configurable options. This sections defines the natural language processing and infor-

mation retrieval terminologies we used throughout the thesis.

Soft words are individual dictionary words, such as browser, and office. Hard words are

a super set of soft words. A hard word may contain a single soft word, such as browser.

Other hard words consist of multiple soft words, which are joined together in the same case

(e.g., openoffice and codegen), or by camel case (e.g, targetPlatform and RecoveryList).

Stop words are words that do not provide domain relevant information in the context [3,16].

Words such as doesnt, me, when, any, more are some examples of stop words.

The classic information retrieval weighting scheme term frequency-inverse document

frequency (tf-idf) [3,29,48] is often used to compute the similarity for a (query, document)

pair. The scheme measures the importance of a word to a document. The following ter-

minologies are used in the discussion. A user query (q) contains a bag of words and each

word in q is a term (t). Each preference name can be thought of as a small document (d)

that also contains a bag of words. A preference system consists of N preferences forms a

collection (c) of size N. Term frequency (tft,d) is defined as the number of occurrence of

a term t in the document d. The value of tft,d equals to zero if t is not in d. Document

frequency (dft) is defined as the number of documents in the collection that contains the

term t. The value of dft equals to zero if t does not exist in any of the documents in the

collection. On the contrary, inverse document frequency (idft) is defined by the equation:

idft = log
N

dft
,

where dft is the document frequency of term t and N is the number of documents in the

collection. Note that if a term exists in many documents, it often carries less discriminating

www.manaraa.com

12

power (dft is large, and thus makes idft small). Hence, idft can be use the effect of terms

that appear in too many documents.

The tf-idf weight for a term in d is defined by the equation:

tf -idft,d = tft,d × idft,

which is the product of the term frequency and the inverse document frequency for that

item (weight equals to zero if the item only occurs in d but not q). As can be seen, a term in

d would have a heavier weight if it occurs many times in a few documents (both tft,d and

idft are large). The similarity score for a (query, document) pair is computed as the sum

of tf-idf weights for all the items that occur in both the query q and the document d by the

following equation:

score(q, d) =
∑
t∈q

tf -idft,d

In our version of the algorithm, we impose an additional scale factor on top of the tf-idf

weighting. See Chapter 4 for the details.

2.2 Related Work

We provide an overview of several areas of research that are closely related to this work.

The role of software users and essential information in bug-fixing has been emphasized

in several studies [2, 4, 47, 59]. Bettenburg et al. [2] found that there is usually a strong

mismatch in bug reports between what developers need to reproduce and fix a bug and

what is provided by users. Herbold et al. [20] developed a tool to capture usage logs for

replaying bugs. Other work tries to reproduce field failures [5, 24], however the focus is

on using the call graph. None of this work tries to capture the software configuration used

during the failure.

www.manaraa.com

13

Several researchers have been focusing on extracting configuration options from code.

Rabkin et al. [45, 46] propose a method to statically detect system configurations, but as

already mentioned this analysis works on a single language (Java) and assumes that all

configurations are contained in a single class. Yin et al. [56] conducted empirical studies

to understand the configuration errors in commercial and open source systems. Zhang et

al. [57] have proposed a technique to diagnose crashing and non-crashing errors related to

software misconfigurations. Again their tool only works on a single language (Java) and

the configurations they study are simple. We look at more complex configuration spaces

with multiple languages and multiple preference layers, etc.

From a traceability perspective, there has been a large body of research [6, 10, 19, 26,

28, 30], but most focuses on the traceability of requirements, architecture and quality at-

tributes. Recent research has looked at extracting traceability for feature models (a type

of configuration model space) [11, 25], but this has been achieved only through documen-

tation, rather than by examining the multiple layers of the software preference space. We

believe some of this work can be leveraged for configurability.

There has been considerable work on using natural language to improve code documen-

tation and understanding [15,16,21,22,49] and to create code traceability links [12,27,38].

In addition, recent work on finding relevant code, uses search to find code snippets that

satisfy a given purpose [31, 52]. While this work is related to our problem, the techniques

assume that there is a large code base to explore and leverage this in their similarity tech-

niques; we want to associate behavior with identifier names with little or no context. In the

long run, we believe that being able to identify desired preferences can enhance traceability

(e.g. between menus items and code elements), but before this is possible, we need to first

be able to extract these preferences individually.

Finally, there has been a large body of work in the software testing community that

demonstrates the need for configuration-aware testing techniques [39, 41, 42, 55] and pro-

www.manaraa.com

14

poses methods to sample and prioritize the configuration space [7, 14, 51, 55]. There has

also been recent work that uses configurability as a way to avoid failures through self-

adaptation [17]. But all of this work assumes that the configuration model is known (or is

somehow extracted).

www.manaraa.com

15

Chapter 3

An Analysis of Configurability in Real

World Systems

In this chapter we present a case study that analyzes the true configuration space of highly

configurable software systems. Some of the work presented in this chapter has been pub-

lished in [23].

3.1 Motivation

As we work more and more with highly-configurable systems in practice, we have dis-

covered common issues that arise which make available configuration-aware techniques

insufficient. For instance, there usually is no single document that describes the complete

set of possible configuration options. We can examine external preference files, but we

find that there may be multiple files, and they still tell only a partial story because there

are hidden (but valid) preferences found only in the source code. We can try to use an

analysis technique such as those proposed by Rabkin et al. [45, 46] to reverse engineer a

complete mapping of our configuration space, but many applications are written in multi-

www.manaraa.com

16

ple languages (e.g. C++, Java, and JavaScript) and often use aliasing to refer to preference

names, neither of which are supported by existing techniques. Finally, if we assume that

we can somehow obtain the ground truth model of the configuration space, then in order to

manipulate the configurations for testing and debugging, we need mechanisms to automate

this process, as well as ways to capture which configuration was active during a failure.

Again, we have learned that the complexity of real software makes this difficult – configu-

rations can be modified and viewed from multiple locations, and are found in both dynamic

and static structures. Finally, we have discovered that it is possible for the static structures

to be out of synchronization with the dynamic ones at the time of failure.

Faced with the complexity that we have described informally so far, we want to quan-

tify how often we see these problems with the aim of developing a generic model of how

modern highly-configurable software is structured and manipulated. We also want to know

if there is a ground truth for the configuration model and dynamic configuration states in

modern configurable systems. We present an analysis in this chapter that we have devel-

oped for this purpose.

3.2 Case Study

We present a case study to help us extract a general model of modern, highly-configurable

systems. Our study has two main objectives. First, we want to quantify the complexity

of the configuration space and what mechanisms are used to define and manipulate this

space. Second, we want to understand what are the challenges that we will face as we

develop configuration-aware testing and debugging techniques. To address these issues we

will center our study around answering the following research questions.

RQ1: What is the complexity of the configuration space in modern configurable software

systems?

www.manaraa.com

17

RQ2: How are configuration options structured, changed and accessed by the user in these

systems?

RQ3: Are the selected configuration options synchronized between the different parts of

the system and throughout the lifecycle of program execution?

3.2.1 Software Subjects Studied

We have selected three different software systems to study. The first subject, Firefox, is

an open source web browser which works on multiple operating systems and has over 300

Million users worldwide [36] and over 9.6 Million lines of code [37]. The second subject

is LibreOffice. It is an open source office productivity suite consisting of a word proces-

sor, spreadsheet application, presentation tool, drawing application, math formula tool and

database [13]. LibreOffice has 6.8 Million lines [37] of code and 25 Million users world-

wide estimated by The Document Foundation in 2011 [53]. The third subject is a large

real-time embedded software system developed at ABB (called ABBc hereafter). ABBc

has approximately 10 Million lines of code, is highly-configurable, and has more than 58

modules; each module defines a subsystem that implements a different set of functionality

of the system.

3.2.2 Study Design

To answer our research questions, we collect configuration information from both a static

and dynamic perspective on each system. We manually study all artifacts that are pub-

licly available to users, including documents (e.g., user manuals and online help pages),

software option menus on the user interface, preference files and source code. We also

utilize tools or APIs that have been provided to manipulate internal data structures that

hold configuration information. For ABBc we have a user manual that is written for those

www.manaraa.com

18

who will modify and change preference files. In addition, we have asked questions of de-

velopers to confirm our assumptions. In Firefox we utilize the source code, examine the

internal dynamic data structures via an API call when the application is running, as well

as study the about:config page (a utility for modifying configurations). We also study

the Options menu, the SQLite database that holds page specific preferences, and online

documentation. For LibreOffice, with the help of online documentation, we study the pref-

erence files and used an API to connect to the dynamic data structures when the program

is running. To answer RQ1, we calculate the ABBc configuration space based on the user

manual and we calculate the configuration space for Firefox and LibreOffice by querying

the dynamic data structures at runtime.

When we collect the configuration information, we make some assumptions. First,

constraints between options are ignored. We realize that this might over approximate the

configuration space, but extracting the exact configurations options may not be feasible

without in-depth knowledge of each system. Second, the plug-ins (add-ons) are not in-

cluded in our calculations. In Firefox and LibreOffice, we build clean versions of the

system from source code for study. Any default plug-ins that come with those will have

their configuration options included, however no additional plug-ins are enabled. To cal-

culate the number of values associated with an option, we have detailed information for

many of the configuration options in the ABBc manual. However, when they are not avail-

able, and for Firefox and LibreOffice, we use a set of rules to come up with a small set of

categories. For Boolean configuration options we use True or False. For integers we use a

‘default value’, a ‘non-default legal value’ and an ‘illegal value’, resulting in 3 values. For

strings we use ‘no string’, an ‘empty string’ and a ‘legal string’, again resulting in 3 values.

In ABBc we have some strings with constraints. For these we use 4 values by adding an

‘illegal string’. This partitioning may underestimate the true configuration space, (it is a

conservative model), but it is consistent with prior work [7].

www.manaraa.com

19

For RQ2 and RQ3 we analyze the systems further and experiment with the various

ways that one can modify configurations when the system is not running. We also analyze

what happens if configurations are modified while it is running as well as what occurs with

the changed configuration options during startup and shutdown. We examine some of the

preference setter code and also look for hidden preferences that may not have been exposed

earlier. We look at both menu access as well as file access. We also use the specialized

tools such as the about:config to interface with Firefox and the ABB tools (denoted

as ABBa and ABBb) to interface with ABBc.

3.2.3 Threats to Validity

As with any study there are threats to validity which we document here. First, we have

only studied three software systems. While we believe they are different enough (one is an

industry application while two are open source applications with different sets of develop-

ers) we can not be sure that our results will generalize to all configurable applications. Our

second main threat is that we are not developers of these systems so we have relied on the

documentation and code to extract the information that we need. With ABBc we were able

to confirm our questions with developers. In the Firefox and LibreOffice environment we

do not have this as a source of validation. But we used third party APIs that are commonly

used to interact with the configuration environments and made an effort to validate our re-

sult internally. We have made the tools we used to query Firefox and LibreOffice available

online as well as the artifacts that we have obtained to reduce this threat. Finally, we could

have measured different elements for this study, but feel that the set of metrics we collected

supports our research questions.

www.manaraa.com

20

Table 3.1: Quantifying number of preference files and preferences of ABBc, Firefox and
LibreOffice

ABBc Firefox LibreOffice
Operating System Embedded System Ubuntu 12.04 Ubuntu 12.04
Version - Mozilla Firefox 27.0a1 LibreOffice 4.0
LOC (M) 10.0 9.6 6.8

Primary
Languages

C++(3.7%),
C(29.6%),C#(8%)

C++(41%),C(21%),
JavaScript(16%),Java(3.1%),

Python(2.7%), Assembly(1.2%),
Shell script(1%)

C++(82%),
Java(6%)

Total Pref Files 6 11 193
Total Prefs 524 1957 36322

Table 3.2: Categorization of configuration space for ABBc and Firefox. The total number
of preferences are shown as cn where c is the cardinality of the preference (number of
values) and n is the number of times we have this cardinality). We have combined like
cardinalities together therefore the total boolean values for example may include some
from the others category

Types ABBc Firefox
Boolean (2) 92 846
Integer (3) 271 517
String (3) 27 594
String with condition (4) 110 –
Others 24 –
Total 2963303411464718391161181 284631111

Table 3.3: Categorization of the configuration space for LibreOffice broken down by mod-
ule

Types Writer Calc Impress Draw Math Database Others Total
Boolean (2) 201 58 69 44 77 44 3940 4433
Integer (3) 157 43 26 22 110 15 5087 5460
Others 298 70 32 3 141 167 25718 26429
Total 22013455 2583113 269358 244325 2773251 2443182 23940330805 24433331889

3.3 Study Results

We now present our results for each of the three research questions. Supplemental data for

the open source applications can be found on the associated website (http://cse.unl.

edu/˜myra/artifacts/Configurations-2014/) [23].

http://cse.unl.edu/~myra/artifacts/Configurations-2014/
http://cse.unl.edu/~myra/artifacts/Configurations-2014/

www.manaraa.com

21

3.3.1 RQ1 Configuration Complexity

To answer RQ1, we turn to Tables 3.1, 3.2 and 3.3. Table 3.1 provides the basic statistics

for our applications. It first shows the operating system and versions of the two open source

applications. We then list the primary languages that are used in each application. We show

all languages that make up at least 1% of the code. We leave out markup languages such

as XML or XUL. All three applications consist of at least two languages. Firefox has the

most with C++, C, JavaScript, Python, Assembly and some shell script. LibreOffice has

both C++ and Java. ABBc has a mixture of three languages, C++, C and C#. We also list

the number of preference files that are used to store the current set of preferences and that

are read at startup. As we see, this ranges from 6 files in ABBc to 193 in LibreOffice (there

are six preference files in ABBc, but we were unable to access one of them, so all of the

computation that follows uses only five files). Finally, we list the total numbers of unique

preferences that we counted in each of these applications. This ranges from 524 in ABBc

to 36,322 in LibreOffice.

We next look at Tables 3.2 and 3.3. We show a breakdown of the configuration options

by the data types and number of values associated with each type. Table 3.2 has data for

ABBc and Firefox. As we can see, we have only three types in Firefox resulting in 846

boolean options and 1,111 options of either integer or string, each with three values. The

total configuration space is equal to 2846× 31111. ABBc has a variety of cardinalities for its

configuration options. We have a more exact model due to better documentation. Our total

configuration space for this application is 6.46× 10259.

Finally we look at Table 3.3 which shows the configuration options in LibreOffice bro-

ken down by individual modules within the suite of tools. This is based on the hierarchical

path used to display the configuration option name. For instance all of the preferences un-

der Writer have the prefix org.openoffice.Office.Writer. We do not believe

www.manaraa.com

22

that all 36,322 would be used together in any test or debug model. Instead one would test

an application such as Writer individually. Although we can identify which preferences

belong to specific applications such as Writer or Calc, there are some categories such

as UI which may be shared among applications. These all fall into the Others category.

The complete categorizations are contained on our website.

3.3.1.1 Additional Complexity for ABBc

ABBc has preference files that contain additional information not found in the open source

applications. This is because it is an embedded system with configuration options that

can be customized for different drivers or ports. The number of devices and ports is open

ended. The two additional pieces of information in these preference files are category

and instance. Certain preferences are grouped into a category, and for each category we

have one or more instances that consist of the same set of preferences. Each category

may contain multiple instances, therefore one preference can appear multiple times. To

understand this better, we can consider a situation where each instance is associated with a

specific hardware or virtual device. Some devices are in the same category, thus have the

same set of preferences, however the device that is being controlled differs.

An example of a snippet of the ABBc preference file is illustrated in Figure 3.1 (the

names are changed for proprietary purposes). There are five options in this figure (bold

fonts): Name (string), Count (integer) , Unit (string) , Length (integer), and Status

(boolean). Name and Count are grouped under CATEGORY A, while Unit, Length, and

Status are grouped under CATEGORY B. There are three instances in CATEGORY A: in

the first instance (line 3), the Name is assigned with value x and Count is assigned with

2; in the second instance (line 4), the Name is assigned with y and Count is assigned with

5; in the third instance (line 5), the Name is z and Count is the default value. 1 Similarly,
1The ABBc user manual states that “if the option is assigned the default value, then it will not be listed

www.manaraa.com

23

there is one instance in CATEGORY B (line 8): the option Unit is assigned with X, the

Length is assigned with 10, and the Status is assigned with ON.

Table 3.4 shows the number of configuration options grouped by categories and the

number of categories for each preference file. In this thesis, when we compute the config-

uration space shown in Table 3.2, we made a conservative assumption that all options will

appear a single time (regardless of instances), to make it in consistant with other systems.

1.  #$

2.##CATEGORY#A:$

3.$$$$'Name$“x"$'Count$“2"$

4.$$$$'Name$"y"$'Count$"$5"$

5.$$$$'Name$"z"$$

6.$$$$$#$

7.$CATEGORY#B:$

8.$$$'Unit"$X"$'Length/"10"$'status$“ON"$

Figure 3.1: Example of ABBc Preference File

Table 3.4: Number of options grouped by categories in ABBc

Preference Number of Number of
Files Categories Options
File 1 3 26
File 2 11 50
File 3 10 78
File 4 7 22
File 5 39 348
Total 70 524

in the configuration file” and this is why the third instance only has one option explicitly written.

www.manaraa.com

24

3.3.2 RQ2 Configuration Access

We begin answering RQ2 by examining the structure of one of our open source systems,

Firefox. Figure 3.2 shows this schematically. In this figure there are a number of prefer-

ence files (both user and default) that contain values for specific preferences. During the

application startup, the default configuration options are read (there are 1932 of them), and

after that, the user preferences are read (there are 50 of them initially). These are read

by the preference modules. The user can modify these on disk directly if they understand

the format. The next time the application opens, these files will be read (assuming that

they have not been overwritten in the meantime – see RQ3 for a discussion of that mech-

anism) and the preferences will be activated. The user can also open Firefox and use the

about:config webpage to control (or look at) the preferences. If a user modifies a

preference in the about:config it will be written to the user preference file and be set

via the preference modules in the code. Additionally the user can go through the options

menu. This contains only a subset of the full set of possible options, only 126 out of the

1957 (calculated in Table 3.1). We do not quantify (or discuss) the Add-on configuration

options in this thesis, but these are also manipulated through a menu. Finally, there is an

SQLite database which contains page-specific option settings for the browser (e.g. if a user

zooms in on a particular website, this information will be stored for the next time they open

that site).

The preference modules are accessible through a set of preference APIs. The APIs are

used to interface with a dynamic hash table which contains all active configurations when

an application is running. There is a 1 to 1 mapping of the preference files to the hash

table, but an N to 1 mapping of the menu items. These are used as variables in the code

and several names may map to the same individual option in memory. Finally the code

itself (program modules) contain the ground truth for the configuration space. We have

www.manaraa.com

25

discovered several options in the code that are hidden. These are options without default

values that can be set if a user knows about them, but which do not appear in our results for

RQ1 since they are not in the hash table or preference files unless explicitly set by the user.

We have analyzed the UI source code of the Firefox option menu and retrieved 126

preferences that are bound to the option menu UI elements. Listing 3.3 shows an example

of binding the preference browser.startup.page, which specifies the start-up page when

one opens Firefox, to a drop-down menu list in the option menu. As can be seen, only 6.4%

of the total preferences exist in the option menu in Firefox.

We note that both the ABBc and LibreOffice systems have similar structures, therefore,

we do not show them all here, but an extraction of the general structure is illustrated in

Figure 2.2 and introduced in Chapter 2.

We next investigate how configuration values are read in the code. First, we take a look

at the APIs used to access the configurations in the code. In Firefox, the return value is

almost always passed by reference. For example, the signature of a boolean preference

access functions from the source file prefapi.h under /modules/libpref/src is shown in

Listing 3.1. As we can see, the configuration option value return val is passed as a pointer

in the formal parameter list. The function returning value (i.e., nresult) is just an binary

indicator of whether the actions defined in this function succeed or fail. This prevents us

from using the techniques developed by Rabkin et al. [45, 46] because the preference type

cannot be inferred by tracking return value types.

nsresult PREF GetBoolPref(const char ∗pref, bool ∗ return val , bool get default) ;

Listing 3.1: Return value is passed by reference

www.manaraa.com

26

SQ
Li
te
'

DB
'

Ha
sh
'T
ab
le
'

SQ
Li
te
'

M
od

ul
es
'

Pa
ge
7s
pe

ci
fic
'p
re
fs
'

e.
g.
'zo

om
7in

/o
ut
,'i
m
ag
e'
lo
ad
in
g'

Pr
ef
er
en

ce
s'

M
od

ul
es
'

1:
1'

1:
N
'

1:
N
'

1:
1'

N
:1
'

N
:1
'

Pr
og
ra
m
'

M
od

ul
es
'

Hi
dd

en
'

Pr
ef
s'

N
:1
'

!!!!!!!!!!!!

U
se

r

ab
ou

t:c
on

fig
'

Pa
ge
'

Pr
ef
'A
PI
s'

Pr
ef
'F
ile
s'

(u
se
r+
de

fa
ul
t)
'

O
pM

on
s'

M
en

u'

Ad
d7
on

s''
O
pM

on
s'M

en
u'

M
ap
pi
ng
'

W
or
kfl
ow

'

Fi
gu

re
3.

2:
Fi

re
fo

x
C

on
fig

ur
at

io
n

St
ru

ct
ur

al
D

ia
gr

am

www.manaraa.com

27

// nsBrowserContentHandler.js

var choice = prefb . getIntPref (”browser. startup .page”) ;

// nsBrowserGlue.js

Services . prefs . setIntPref (”browser. startup .page”, 3) ;

Listing 3.2: Query and update Firefox preferences using JavasScript

// main.xul

<preference id=”browser. startup .page” name=”browser.startup .page” type=”int”/>

...

<menulist id=”browserStartupPage” preference =”browser. startup .page”>

<menupopup>

<menuitem label=”&startupHomePage.label;” value=”1” id=”browserStartupHomePage”/>

<menuitem label=”&startupBlankPage.label;” value=”0” id=”browserStartupBlank”/>

<menuitem label=”&startupLastSession. label ;” value=”3”

id=” browserStartupLastSession ”/>

</menupopup>

</menulist>

// main. js

let startupPref = document.getElementById(”browser. startup .page”) ;

...

startupPref .updateElements() ;

Listing 3.3: Query and update Firefox preferences using XUL

www.manaraa.com

28

// String

rv = mPrefBranch−>GetBoolPref(”autoadmin.append emailaddr”, &appendMail);

// Variable

prefBranch−>GetIntPref(kCookiesLifetimeBehavior, &lifetimeBehavior) ;

// Object macro

rv = branch−>GetIntPref(DISK CACHE CAPACITY PREF, &capacity);

// Function macro

rv = prefs−>GetIntPref(HTTP PREF(”connection−retry−timeout”), &val);

// Class member

rv = prefBranch−>GetBoolPref(externalProtocolPref . get () , & externalProtocol) ;

Listing 3.4: Different types of API preference name parameters

Second, the preferences are accessed via multiple programming languages. The Listing

3.2 and 3.3 show two examples of the Firefox source code interfacing with the preference

system via JavaScript and XUL respectively. The JavaScript performs most of the manip-

ulation, but the XUL code interfaces and dereferences the preference name.

Third, the preference name can be in various forms when passing to preference APIs.

The name of the preference is usually passed as the first parameter to the preference APIs.

Listing 3.4 shows a few examples of passing the preference name as a string, a variable, an

object macro, a function macro, or a class member.

Finally, we show examples of hidden preferences. In the String example in Listing

3.4, the preference autoadmin.append emailaddr appears in the source code, but it does

not exist in any preference files unless added by the user. We consider it as a hidden prefer-

ence. Preferences shown in Listing 3.5 are some other examples of hidden preferences from

Firefox source code. Our configuration space analysis (RQ1) misses these preferences. We

do not know how many exist in Firefox.

www.manaraa.com

29

pref .browser.homepage. disable button .bookmark page

pref .browser.homepage. disable button . current page

pref .browser.homepage. disable button . restore default

Listing 3.5: Hidden preferences

We also investigate how configuration values are read in code in ABBc. First, there

is a configuration manager class (written in C) that reads the values at different levels: it

may read values of a single preference, it may read a single instance that contains a couple

of preferences, or it may read all instances that under the same configuration category.

Just like in Firefox, all these values are passed by reference. Second, the name of the

preferences can be in various forms, such as string, variable, and macro. Finally, there are

several configuration options that are accessed in the code but not in the document (hidden

preferences) and there are also some configuration options that are in the document but are

never read in the code (dead preferences).

Table 3.5: Number of configurations accessible at different layers

System Static View External Control
Table 3.1 Code Manual Pref. Files Menu

ABBc 524 428 + 166 524 < 524 < 524
Firefox 1957 > 1957 NA > 1957 126

Table 3.5 summarizes the number of configuration options that are accessible at differ-

ent layers (defined in Figure 2.2). The first column (Table 3.1) shows the values we obtained

for RQ1. The last column (Menu), is used to represent configuration control via menu in

Firefox and via ABBa and ABBb in ABBc. For ABBc there are (428 + 166 = 594) op-

tions accessed in code. 428 options are also described in the manual, but 166 options only

appear in code (hidden preferences), and (524− 428 = 96) options only appear in the doc-

ument (dead preferences). This shows that the document is not updated accordingly as the

code is changed, although the document is a very important artifact that tightly connects

the system with customers. We do not have accurate numbers of the preferences accessible

www.manaraa.com

30

by external control elements, but quote the manual which says “if the option is assigned

the default value, then it will not be listed in the preference file.”; there are also preferences

not in ABBa or ABBb given that “some configurations have to be changed in preference

files”.

3.3.3 RQ3 Configuration Synchronization

To answer RQ3, we map the lifecycle of a running application to understand when and

where its configurations are synchronized between its layers. We model three distinct

phases, startup, runtime, and shutdown. Figure 3.3 shows the behaviors of Firefox and

LibreOffice, and Figure 3.4 shows the behaviors of ABBc. The numbers on the leftmost

side specifies the number of preference files in different groups of files. Solid arrows repre-

sent direct connections, while dashed arrows indicate the need for a mapping/traceability.

In all three systems at startup, the configurations are read from persistent storage (con-

figuration files) and loaded into memory. There is a specific order in which these are loaded.

If the same configuration options are repeated, set to different values, the last one read will

be the one which holds. While the applications are running, a user can modify the con-

figuration files directly. This is not immediately reflected in the dynamic memory. If a

failure occurs at this point the persistent memory is out of sync with the dynamic. In all

three systems the user can also dynamically modify the configurations while the applica-

tion is running. In Firefox and LibreOffice these will take effect immediately and be written

back to the preference files. In ABBc the dynamic memory is not updated. The changed

configurations are held in temporary memory and take effect at the next startup.

On shutdown, in Firefox and LibreOffice the dynamic memory overwrites the current

preference files before the application closes. In Firefox the user preference file is overwrit-

ten, but the default ones are not. This means that if a user modified the user preference files

www.manaraa.com

31

S
ta

r
t
-u

p

R
u

n
n

in
g

S

h
u

t
-d

o
w

n

S
c
h

e
m

a

C
o

n
fi

g

A
d

m
in

C
o

n
fi

g

U
s
e

r

C
o

n
fi

g

O
p

t
io

n

M
e

n
u

M
e

m
o

r
y

M
e

m
o

r
y

S
c
h

e
m

a

C
o

n
fi

g

A
d

m
in

C
o

n
fi

g

U
s
e

r

C
o

n
fi

g

M
e

m
o

r
y

D
e

fa
u

lt

P
r
e

fs

U
s
e

r

p
r
e

fs

O
p

t
io

n

M
e

n
u

M
e

m
o

r
y

M
e

m
o

r
y

M
e

m
o

r
y

a
b

o
u

t
:

c
o

n
fi

g

r
e

a
d

r
e

a
d

w
r
it

e

w
r
it

e

m
o

d
if

y

m
o

d
if

y

L
ib

r
e

O
ff

ic
e

P
r
e

fs
 L

if
e

c
y
c
le

F
ir

e
fo

x
 P

r
e

fs

L
if

e
c
y
c
le

S
Q

L
it

e

S
c
h

e
m

a

C
o

n
fi

g

A
d

m
in

C
o

n
fi

g

U
s
e

r

C
o

n
fi

g

1

1

P
e

r
m

a
n

e
n

t

U
s
e

r
 P

r
e

fs

D
e

fa
u

lt

P
r
e

fs

U
s
e

r

p
r
e

fs

P
e

r
m

a
n

e
n

t

U
s
e

r
 P

r
e

fs

D
e

fa
u

lt

P
r
e

fs

U
s
e

r

p
r
e

fs

P
e

r
m

a
n

e
n

t

U
s
e

r
 P

r
e

fs

U
s
e

r

U
s
e

r

1

9

1
9

1
7

3

Fi
gu

re
3.

3:
Fi

re
fo

x
an

d
L

ib
re

O
ffi

ce
L

if
ec

yc
le

D
ia

gr
am

www.manaraa.com

32

during runtime, those changes will never be seen (not even on the next startup). However,

if they modified other preference files they will appear on next startup.

ABBc has a more complicated “restart” behavior, described as follows. When the sys-

tem is restarted normally (denoted as start-I): the current system will be stopped. All system

preferences will be saved. Restarting this way will activate any configuration changes. A

second option is to restart and select another configuration (start-II). In this case the current

system will be stopped. All system preferences will be saved, so that the system state can

be resumed later. The last restart is to restart and return to default settings (start-III). After

restart, the system state will be resumed but any changes done to system preferences will be

lost. Instead, system preferences are read from the originally installed system on delivery.

Furthermore in ABBc there are three sets of preferences: active (loaded by default),

backup, and default. During startup, instead of loading different sets of preferences in order

(as happens in Firefox and LibreOffice), the system only loads one set of preferences into

memory, based on the type of restart. During normal start and start-I, the active preferences

are loaded, during start-II, a selected set of previous backup preferences are loaded, and

during start-III, the factory default preferences are loaded. During run time, the users can

make configuration changes in preference files directly, or through ABBa or ABBb, but

changes will not take effect until a restart. The changes will be stored temporarily in a

memory different from the active preferences. Users can also save the currently active

preferences as a backup. Finally, all changes made at the runtime will be written back into

the active preference files when the system is normally shutdown or restarted in I or II.

Note that if the users select a start-III, all changes will be lost.

www.manaraa.com

33

St
ar
t%
up

(
(n
or
m
al
,(s
ta
rt
%I,
(st
ar
t%
II,
(st
ar
t%
III
)(

(

Ru
nn

in
g(

Sh
ut
%d
ow

n(
(

(n
or
m
al
,(s
ta
rt
%I,
(st
ar
t%
II,
(st
ar
t%
III
)(

(
Ac
:v
eU

se
r(

Pr
ef
s(

AB
B_

a(

M
em

or
y(

M
em

or
y(

M
em

or
y(

AB
B_

b(

no
rm

al
,(s
ta
rt
%I(

m
od

ify
(

AB
B_

c(
Pr
ef
s((

Li
fe
cy
cl
e(

Ac
:v
eU

se
r(

Pr
ef
s(

!!!!!!!!!!!!

(
Ba

ck
up

U
se
r(

Pr
ef
s(

(
De

fa
ul
t(

Pr
ef
s(

(
Ba

ck
up

U
se
r(

Pr
ef
s(

(
De

fa
ul
t(

Pr
ef
s(

(
Ac
:v
eU

se
r(

Pr
ef
s(

(
Ba

ck
up

U
se
r(

Pr
ef
s(

(
De

fa
ul
t(

Pr
ef
s(

ba
ck
up

!

NO
T$
fo
r$$

st
ar
t+I
II$

(

St
ar
t%
III
(

St
ar
t%
II(

6(6(6(

Fi
gu

re
3.

4:
A
B
B

c
L

if
ec

yc
le

D
ia

gr
am

www.manaraa.com

34

3.4 Discussion

In this section we summarize the implications and lessons learned from our study. The

first two lessons learned are geared towards practitioners since they reflect the state-of-the-

art. The last two provide a roadmap for researchers who plan to develop new tools and

techniques for configuration-aware testing and debugging.

1. Configuration Modeling Should Merge Multiple Layers

We return to our first question of how one can model the full configuration space when

performing testing and debugging. Although the application code is the ground truth, the

maintenance engineers may not always have access to code. If instead we use the user

manuals/documentation, we most certainly miss out on some configurations. Moreover, in

the applications studied, the menu on the user interface contained only a small subset of

the configuration options. While these might contain the most widely used preferences,

they do not provide a true indication of the real configurability of a system. Finally, we

can use the persistent configuration preference files, but we must first understand how (in

what order) and when these are activated in the dynamic system. Two issues that have

arisen during our analysis are those of hidden preferences and dead preferences. These

constitute a small part of the configuration space model, but one should be aware of their

potential existence. Given the results of our study, we believe that to obtain an accurate

model of the configuration space one should consider and merge multiple artifacts which

includes preference files, menus and documentation. Additionally, since documentation is

the primary artifact a user would read, it should be updated as the design and code changes

in a timely manner, particularly when it comes to system testing or other configuration

related tasks.

2. Configuration Traceability is a Necessity

Given the variety of places that configurations are accessed and mentioned, it seems

www.manaraa.com

35

that the task of simply setting a configuration option requires deep knowledge of the ap-

plication. If we return to our example, Firefox, one needs to know the mapping of menu

names to preference variable names to modify them automatically. Furthermore we have

seen (both in Firefox and ABBc), a many-to-one mapping of variables in the code and

preference files and dynamic memory. Providing traceability mapping between elements

of the configuration manipulation mechanism are essential to making configuration-aware

techniques work.

3. Analysis Tools Need to Cross the Programming Language Barrier

As we have seen, the current state of research in analysis for extracting configurations

from code expects a single programming language and single class files where the config-

uration information code (such as setting and getting configuration) lies. Yet this is not

realistic for the large scale subjects that we have studied. Our configuration options are

manipulated and referenced across programming language barriers and in multiple mod-

ules. We need, therefore, new analysis techniques that cross these boundaries, can handle

aliasing, and that use additional heuristics to identify the actual getter and setter code.

4. Configuration State Capture or Approximation Techniques are Needed

As we argued above, we need a way to capture the active configuration when the system

fails so that we can reproduce and debug the failing test case. Each of the three systems we

studied, allows the user or maintenance engineer to modify the configurations both exter-

nally or internally during runtime. While our open source applications update the memory

and files immediately, in our industrial application, the configuration is not activated until

possibly startup (with the exact behavior dependent on the type of reboot selected). Even

if we understand how the configuration manipulation works, there is the possibility of race

conditions in all of the applications, depending on the exact timing of the configuration

modification and failure. It is also possible to make changes to external files for modifica-

www.manaraa.com

36

tions at startup, yet these may be overwritten during a normal shutdown. In order to extract

the ground truth of the configuration at failure, monitors are needed that capture this infor-

mation. But these may incur overhead and cause concerns for privacy. Alternatively, we

know that the persistent memory contains a large portion of the correct configuration space,

so algorithms that work from this point and search close by may be useful for reproducibil-

ity. Research has shown that failures tend to have feature locality [17], so it is possible we

can leverage some of those ideas for this work.

3.5 Summary

In this chapter we analyzed a highly-configurable industrial application and two open

source applications in order to quantify the true challenges that configurability creates for

software testing and debugging. We find that (1) all three applications are multi-lingual,

hence static analyses need to cross programming language barriers to work, (2) there are

multiple access points and methods to modify configurations, implying that practitioners

need configuration traceability and should gather and merge metadata from more than one

source and (3) the configuration state of an application on failure cannot be reliably deter-

mined by reading persistent data; a runtime memory dump or other heuristics must be used

for accurate debugging. We also provided a roadmap and lessons learned that will help

practitioners better handle configurability now, and that may lead to new configuration-

aware testing and debugging techniques in the future.

www.manaraa.com

37

Chapter 4

PrefFinder

In this chapter we present the recommendation aspect of this work. We introduce PrefFinder,

a natural language recommendation framework.

4.1 Overview

Figure 4.1 shows an overview of the PrefFinder framework. The application view is respon-

sible for interacting with system preferences and interfacing with the user. Preferences can

be extracted from sets of configuration files, through a static analysis [44], or by hooking

into a dynamic data structure such as the Firefox hash table. It is also possible, that an ex-

ternal resource such as an online help system could be used, so that there is an explanation

for each preference as well (such a help utility does exist online for about:config and

is something we intend to include as future work). PrefFinder takes the system preferences

and first parses these into sets of keywords. It also accepts user queries in the form of nat-

ural language. A series of back-end databases can be used to increase the effectiveness of

PrefFinder. For instance, it can include different types of dictionaries as well as a lexical

database to allow for synonyms or other “close” matches. The parsing and ranking algo-

www.manaraa.com

38

rithms extract the meanings from the queries, search the parsed preferences and return a

ranked list of suggestions. The rest of this chapter explains the framework in more detail.

System
Preferences

Queries

Display

Parser

Ranker

Dictionaries

Lexical DBs

!!!!!!!!!!!!

Abbreviations
Contractions
Spelling
Prefixes
Suffixes
Proper nouns
Stop words
…

Synonyms
Antonyms
Relations
Topics
…

Application
View

Core
Algorithms

PrefFinder

Databases

User

PrefFinder

Rank File

Figure 4.1: PrefFinder framework architecture

4.1.1 Application View

Figure 4.2: PrefFinder prototype user interface

The front-end of PrefFinder interfaces with both the user and the target software sys-

www.manaraa.com

39

tem. This can be a command line application to allow automation for multiple queries

at a time, or it can be an interactive application. Figure 4.2 shows our prototype exten-

sion for Firefox as it appears in the Windows operating system. The user will enter a

short description in English about what features or functionality of the system they want

to customize, and specify control parameters such as the number of results to display. In

this example, the user is interested in seeing the first 10 results for the option that forces

Firefox to warn someone when closing more than one tab at a time. The query ”Firefox

17.0 doesn’t warn me when closing multiple tabs any more” is a real question that some-

one asked on the Firefox Support Forum [33]. This behavior is controlled by the preference

browser.tabs.warnOnCloseOtherTabs. Note that user may enter arbitrary English sentences

with different punctuation, numbers, mixed-case letters, and using different forms of the

language such as present participle (closing) and plural (tabs).

The results are returned in rank-order (with a value showing the score). As can be seen

the first option has a higher rank (6.41) than the next two options.

4.1.2 Parser

Once the query has been submitted and the preferences read, there are two separate parsing

activities that occur. The first one, only needs to be performed once (assuming that new

preferences are not added during the running of PrefFinder). The second parsing occurs for

each query. We discuss the preference parsing first and follow this with a discussion of the

query parsing.

4.1.3 Preference Name Parsing

System preferences are often stored as name-value pairs [44]. For instance, the prefer-

ences in Firefox and Eclipse are stored in similar formats with the name of the prefer-

www.manaraa.com

40

ence and its current value (e.g. true). LibreOffice uses a more complex XML format to

store preferences, but the underlying format can still be seen as a name-value pair. Since

we are not interested (at this time) in the values, we focus on parsing the names of the

preferences. We adopt the commonly used information retrieval terminology in our fol-

lowing discussion [3, 16]. (Definitions of some terminologies used in this thesis can be

found in Chapter 2). Preference names are usually represented as arbitrary strings, such as

browser.link.open newwindow in Firefox, org.eclipse.jdt.core.compiler.codegen.targetPlatform

in Eclipse, and /org.openoffice.Office.Recovery/RecoveryList in LibreOffice. Similar to pro-

gram variable identifiers, a preference name must be a sequence of characters without any

white space. In order to improve the readability, soft words within a preference name are

separated by word markers, such as a period(.), underscore (), dash (-), backslash (/), or

are separated by the use of camel case letters. Using markers to split words is the first

(trivial step). After splitting words at word markers, the remaining identifiers are called

hard words.

To incorporate meaningful (code related) words to use during parsing in PrefFinder, we

compiled a dictionary from the dictionary used in [21], which is derived from iSpell [18],

and a list of computer science acronyms and abbreviations (such as SYS and URL) [1]. We

also adopt a prefix list and a suffix list from the work of [15] to identify commonly used

prefixes and suffixes (such as uni- and -ibility). Our dictionaries are available online (see

Section 4.2).

In the related work on source code mining, several variants of splitting algorithms are

used. In PrefFinder, we use a two step process for finding identifiers. After the initial

separation by word markers, we first use a camel case splitting algorithm (Camel Case). We

found that this often does not provide a clean split, so we have developed three additional

same case splitting algorithms based on [15]. We evaluate these in our study. We use a

forward greedy approach (Greedy) as was described in [16]. We also use a backward greedy

www.manaraa.com

41

algorithm (Backward), which is a modification of this, and finally we tried a dynamic

programming approach (DP).

4.1.3.1 Camel Case Splitting

We based our camel case algorithm on that from [15]. In that work they use the frequency

of words to help rank which splits to make. Since we do not have this ability (i.e. we

have no code to match), we consider all splits and then choose based on our reference

dictionaries as described next. Our algorithm takes a hard word string s and the dictionary

d as its inputs, and then outputs a space-delimited s. The algorithm loops through s from

the beginning to the end sequentially to identify proper split positions. Note that s is kept

intact if it does not contain any camel cases.

When the algorithm detects a pattern where a lowercase letter s[i] occurs immediately

before an uppercase letter s[i + 1], a space is inserted between these two letters. The

algorithm then continues to process the rest of s. If the algorithm finds a pattern where a

uppercase letter s[i] occurs immediately before a lowercase letter s[i+1], there are typically

two scenarios. First, if there is just a single uppercase letter in front of s[i + 1], then no

split is required. Thus, hard word checkDefaultBrowser would be split into check Default

Browser. Second, if there is a sequence of uppercase letters before s[i + 1], we need to

decide whether to split before or after s[i]. The algorithm first attempts to split before s[i].

The split is committed if either side exists in d. However, if this step fails to commit a split,

then the algorithm attempts to split after s[i] to see if any side exists in d. No split is made

if both attempts fail. As a result, HTMLDocument and XMLserializer are split into HTML

Document and XML serializer, respectively. Note that the algorithm favors the split before

s[i], since it is the more commonplace camel case practice.

www.manaraa.com

42

4.1.3.2 Same Case Splitting

In the second step of parsing, each resulting hard word is further split using one of the

same case identifier splitting algorithms. As was the camel case algorithm, these too are

modifications from [15]. Again, our algorithm differs slightly since we do not have source

code to mine. We also propose to split from the back end of the word, first and last we use

an optimization approach (dynamic programming).

Algorithm 1 GreedySplit
1: Input same-case string s, dictionary d
2: Output space-delimited string s
3:
4: if length(s) ≤ 1 ∨ s ∈ d then
5: return s
6: end if
7: i← 0, j ← 0
8: while i < length(s) do
9: if s[0 : i] ∈ d ∧ ¬isPrefix(s[0 : i]) then

10: j ← i
11: end if
12: i← i+ 1
13: end while
14: if j = 0 then
15: return s[0] + GreedySplit(s[1 : length(s)− 1], d)
16: else
17: return s[0 : j] + “ ” + GreedySplit(s[j + 1 : length(s)− 1], d)
18: end if

Algorithm 1 shows the pseudocode of the forward greedy algorithm. It takes a same

case identifier s and the dictionary d as inputs, and outputs the space-delimited s. If s is

empty, a single letter, or a soft word, there is no need to split (line 4-6). Otherwise, it

loops through s starting from the beginning and tries to find the longest prefix that happens

to be a soft word (but cannot be any common prefix) (line 8-13). If such a prefix exists,

the split is made and the algorithm is recursively called on the remaining substring (line

17). However, if such a prefix does not exist, the algorithm is recursively called on the

www.manaraa.com

43

remaining substring that starts from the second position (line 15). As a result, Greedy

is able to correctly split identifiers such as browserid into browser id. However, Greedy

incorrectly splits casesensitive into cases ens it iv e, because it recognizes cases as the

longest prefix soft word during the first iteration, and thus breaks the remaining substring

apart.

Algorithm 2 BackwardSplit
1: Input same-case string s, dictionary d
2: Output space-delimited string s
3:
4: if length(s) ≤ 1 ∨ s ∈ d then
5: return s
6: end if
7: i← length(s)− 2
8: while i ≥ 0 do
9: l← s[0 : i]

10: r ← s[i+ 1 : length(s)− 1]
11: if l ∈ d ∧ ¬isPrefix(l) ∧ r ∈ d ∧ ¬isSuffix(r) then
12: return l + “ ” + r
13: else if l ∈ d ∧ ¬isPrefix(l) then
14: r ← BackwardSplit(r, d)
15: if r was further split then
16: return l + “ ” + r
17: end if
18: end if
19: i← i+ 1
20: end while

To overcome the shortcomings of Greedy, we propose an alternative algorithm (Back-

ward) that walks through the hard word from the end to the beginning. Algorithm 2 shows

the pseudocode of the Backward algorithm. As before, there is no need to split a soft word,

a single character, or an empty string (line 4-6). Otherwise, it loops through all the possi-

ble split positions in s from the end to the beginning. If both the left (l) and the right (r)

substrings with respect to the current split position are soft words (but cannot be common

prefixes and suffixes), then the split is made affirmatively (line 11-12). However, if only l

www.manaraa.com

44

is a soft word, the algorithm is called recursively on r. The split is committed only if r was

further split (13-18). Thus, casesensitive is correctly split into case sensitive since sensitive

cannot be further split while both case and sensitive are soft words. The algorithm also

successfully avoids splitting identifiers such as browserid into brow ser id.

Our last algorithm uses dynamic programming to split identifiers. Dynamic program-

ming is good at finding global optimal solutions for optimization problems [50]. Thus,

the identifier splitting problem can be transformed into the optimization problem where

the goal becomes finding a split that maximizes the length of the longest word that exists

in the dictionary. Suppose we have a same-case identifier s with n letters represented as

{s1, . . . , sn} and a dictionary d. Let us define a table T [n, k] to record the maximum length

of the longest substring of all possible splits of {s1, . . . , sn} into k ranges. A substring has

length of zero if it does not exist in d. Thus, we use the following recurrence relation to

compute the values for the table:

T [n, k] =
n−1
max
i=1

{
max

(
T [i, k − 1], length({si+1, . . . , sn})

)}

The initial conditions of the recurrence relation to initialize the first row and the first column

are:

T [1, i] = length({s1}) for all 1 ≤ i ≤ n

T [j, 1] = length({s1, . . . , sj}) for all 1 ≤ j ≤ n

Intuitively, when splitting a single letter s1 into i ranges, the length of the longest substring

in d must either be 0 ({s1} 6∈ d) or 1 ({s1} ∈ d), while when splitting a prefix substring

with j letters, the length of the longest substring in d must be either 0 ({s1, . . . , sj} 6∈ d) or

j ({s1, . . . , sj} ∈ d).

In order to reconstruct the optimal split that maximizes the longest substring exists in d,

www.manaraa.com

45

an additional table D is built to keep track of the positions of the dividers (spaces) that have

been inserted into s. Let us define a table D[n, k] to record the index of the last inserted

divider when splitting string {s1, . . . , sn} into k ranges. We start with the value in D[n, k]

and backtrack to get indices for all the dividers.

Note that DP may produce multiple optimal solutions. For instance, DP generates both

on error and o n error as the optimal splits for onerror, since both splits acknowledge error

as the longest substring that exists in d. In situations where there are multiple optimal

solutions, we choose the one that minimizes the number of substrings that do not exist in

d. Thus, on error becomes the final split since all of its substrings (on and error) exist in d.

4.1.4 Query Parsing

Once we have our preferences split, we can parse the user queries to extract a set of relevant

keywords. Since we are expecting our queries to be run against identifier-like names, we

have adopted a set of rules that limit what keywords that are extracted. The first step

removes words with leading numbers, special symbols and punctuation, and converts all of

the letters to lowercase. After this step, the user query from our example becomes firefox

doesnt warn me when closing multiple tabs any more. We filter stop words prior to further

processing, using a stop words list. We also remove contractions using a modified version

from [21]. We added words to this list such as default, enable, and disable because they are

generic and carry a little discriminating power when it comes to configurations. The above

query thus becomes firefox warn closing multiple tabs, which only contains the keywords

that carry the core information.

The size of the user query has been reduced from the previous steps now without losing

the core information. Preferences that contain any of these words should be considered as

relevant to the user. However, the query may fail to match the desired preferences if the

www.manaraa.com

46

user expresses the same concept using slightly different words that have similar meaning,

rather than using the exact words in the preference names or using the same word, but in

different word tenses. Assume that the user types the word closing to describe the event of

closing Firefox. However, preference names are often made up of root words (words such

as close). In addition, some users may use the word shutdown instead of closing. To allevi-

ate this shortcoming, PrefFinder allows for inclusion of additional lexical databases. In our

implementation we evaluate WordNet [32], a lexical database for English, that expands the

keywords in a user query with their synonyms and also removes/adds plurals by converting

to their root forms. In our running example, WordNet expands this back to 18 keywords

with additions such as shutdown, shutting, closedown, closing, closure, completion, tab.

4.1.5 Ranker

Once we have parsed both the preferences and the query, the next step is to suggest pref-

erences that are most relevant to the user query. This is a matching problem that is very

similar to web searches, where a web search engine searches for web documents that are

most relevant to the user query. The difference is that we view the user query and each

preference name as a bag of words [29], where the order of words does not matter.

To compute the similarity for each (query, preference) pair, we adopt the classic in-

formation retrieval weighting scheme term frequency-inverse document frequency (tf-idf)

[3, 29, 48], which measures the importance of a word to a document. Terminologies def-

initions can be found in Chapter 2. We leave the refinement of this weighting for future

work.

On top of the traditional tf-idf weight, we impose an additional scale factor which

reduces the the effect of synonyms, by scaling down their weight. Our matching favors

the term that is found in the original user query. We experimented with a series of scale

www.manaraa.com

47

factors on the Firefox preference set and found that 0.4 works best as the scale factor for

synonyms. Thus, the overall similarity score for a (query, document) pair is computed as

the sum of tf-idf weights for all the items that occur in both the query q and the document

d by the following equation:

score(q, d) =
∑
t∈q

tf -idft,d × scale,

where scale equals to 0.4 for synonyms, and 1 otherwise.

Table 4.1: Ranking the terms in the correct preference for our example query

item in d tf df idf tf-idf scale weight
browser 0 300 0.79 0 1 0
tabs 2 30 1.80 3.60 1 3.60
warn 1 21 1.94 1.94 1 1.94
on 0 72 1.41 0 1 0
close 1 13 2.15 2.15 0.4 0.86
other 0 4 2.67 0 1 0

Consider the previous example, where the bag of words after parsing (without the syn-

onyms) are {firefox, warm, closing, multiple, tabs} for the query q and {browser, tabs,

warn, on, close, other} for the corresponding preference d (browser.tabs.warnOnCloseOtherTabs).

Table 4.1 shows the statistics of each term in d (the preference). The overall score is the

sum of the weights of all the terms (0 + 3.60 + 1.94 + 0 + 0.86 + 0 = 6.41). Note that

term close in d is a synonym of term closing in q, and thus is multiplied by a scaling factor

of 0.4. The term browser has a very low idf because it occurs in a large number of prefer-

ences (300). The term tabs carries more than half of the weight because it matches twice

and occurs in only a few preferences (30).

After assigning each preference a similarity score for a given query, all preferences are

ranked in decreasing order with respect to the score. The top n preferences are written to

a rank file (n is a parameter specified by the user via PrefFinder front-end UI), which is

www.manaraa.com

48

subsequently sent to the front-end and displayed.

4.2 Case Study

In this section, we present a case study to evaluate the potential usefulness of PrefFinder.

We begin by evaluating the different variations of splitting algorithms, since these are the

core to making PrefFinder work. We then use the results from the first question, to in-

form our evaluation of the overall feasibility of PrefFinder. We end with a comparison of

PrefFinder against simple web queries which we believe would be the current state of the

art for solving this problem. We answer the following two research questions in this study:

RQ1: How do the identifier splitting algorithms differ in terms of accuracy and efficiency?

RQ2: How effective is PrefFinder in extracting preference options for a set of user queries?

The rest of this section describes our objects of analysis, metrics, and methodology. Arti-

facts, such as the queries, dictionaries and results can be found on our artifact website1,

4.2.1 Object of Analysis

Our study object is the open source web browser Firefox version 20.0 on the Ubuntu op-

erating system. In this version, there are 1837 default preferences that can be modified

via the about:config utility. We implemented both a command-line and interactive

version of PrefFinder. The interactive implementation is an extension to the browser. We

utilize the Firefox built-in XPCOM API [34] to get direct access to the preference system

at run time. We use the XUL [35] markup language for the interface. We use WordNet

3.0, for the synonyms, the iSpell dictionary, a stop words dictionary and a dictionary of

computer acronyms. These are available on our associated website.
1http://cse.unl.edu/˜myra/artifacts/PrefFinder_2013/

http://cse.unl.edu/~myra/artifacts/PrefFinder_2013/

www.manaraa.com

49

4.2.2 Study Setup and Method: RQ1

To evaluate our first research question, we focus on the splitting algorithms which operate

on the set of preferences. We set up our experiment to determine how well each variant

of the algorithm works on the full preference set in Firefox. Since preference names are

composed of hierarchical names (split by a period), we first do a trivial pass to get the

identifiers for each preference. Each identifier can be a single soft word (e.g. browser),

multiple soft words (newtab or WarnOnClose). We found 22 identifiers that begin with

numbers such as 3208198ce6fd} or 4447. We removed these from our experiments. As a

result, we have a total of 1594 distinct identifiers that make up the 1837 preference names.

To obtain an oracle for this research question, we asked a research programmer who is

not associated with this project (and who has no knowledge of PrefFinder or what we plan

to do with this data) to manually split identifiers, so that the resulting words make the most

sense from a programmer’s perspective. We examined these after the fact, to ensure that

the splits looked reasonable. Except in a few cases, where user preference might impact

the result (e.g. name 1 vs. name1, we found that we agreed with these splits. Of the 1594

identifiers, 567 identifiers were split during this process into more than one word. The

remaining 1027 identifiers were left intact. Table 4.2 summarizes these attributes of our

oracle data.

Table 4.2: Preferences and identifier oracle for Firefox 20.0

Number of Number of Identifiers
System Prefs

Intact Split Distinct Discarded
1837 1027 567 1594 22

To compare against the oracle, for each of the identifiers, we first run the camel case

identifier splitting algorithm. Then we run these identifiers through the three additional

splitting algorithms (Greedy, Backward, and DP). The results generated by each algorithm

www.manaraa.com

50

are compared against the manually produced oracle for an exact match. The effectiveness

of each algorithm is measured as the percentage of splits that match oracle exactly.

To evaluate efficiency, we prototype each identifier splitting algorithm separately in

Python, and run on a Linux laptop with 2.40 GHz quad-core processor and 6.0 GB RAM.

The efficiency of the algorithms is measured as time in seconds to complete the splitting

for all of the 1594 distinct identifiers. We run our timing experiments five times and report

averages and standard deviations.

4.2.3 Study Setup and Method: RQ2

In order to simulate how users or developers interact with PrefFinder, we collected a set of

questions asked by real Firefox users on the Firefox Support Forum [33]. Since people ask

many types of questions on this forum, we constrained our choices to those that are related

to preferences. We did this by searching on about:config. On the date of our query

(April 5, 2013), a total of 794 posts were returned as this result. We selected the queries that

appear to refer to questions on how to customize Firefox, instead of troubleshooting. For

example, ”How do I enable pinch to zoom?” was selected, because it asks about customiz-

ing Firefox. However, ”Searching from the url address window has stopped working” was

not, because it is considered as a troubleshooting post. An additional requirement, is that

the query had to have at least one preference proposed in a follow up post as the solution,

since we need an objective oracle. We did a sanity check to validate the proposed solutions

(but did not attempt to confirm that they are all correct).

The most commonly used preference solutions, such as browser.startup.homepage,

were intuitively verified based on our experience. A handful of solutions that fell out of this

category were verified by experimentation, such as toggling preference browser.tabs.onTop

on and off manually to validate that the tab position changes. Some solutions, though,

www.manaraa.com

51

such as browser.cache.offline.capacity, were not verifiable by this approach. Under these

situations, we just checked to ensure that these solutions actually exist in the Firefox pref-

erence system. In some cases, the follow-up page provided several preferences to answer

the user’s question. If they all seem reasonable, then we allow all to serve as the oracle and

we use the first match on any of the possible solutions. In our final set of questions, 20%

had two or more possible answers. We stopped when we had 100 queries that matched our

criteria.

To keep the experiment as realistic as possible, queries are collected exactly as they

appear in the posts without any formatting by using a copy and paste. As a result, queries

retain their original formats with punctuation, special symbols, white space, mixed-case

letters, etc. Table 4.3 shows a subset of our queries along with the oracle. Query number

5 has four possible answers as its oracle. The full set of queries with links to the original

postings can be found on our website.

We then ran each query through PrefFinder. Preferences were returned in ranked (de-

scending) order. We measure the effectiveness of PrefFinder by counting the number of

(non-zero ranked) returned preferences (the smaller number of returned preferences is bet-

ter because this is less work for our user), and the rank position in which the (first) correct

solution is returned (or not found if the solution is not within the returned set).

As a second part of this study, we compare PrefFinder against regular web queries.

Since we don’t have another tool to compare PrefFinder against, we think that this is the

best option. We evaluate the ranking positions and simulated human cost (measured as the

number of page screens that a user must go through to find the answer). To set up this

part of the study, we use Google on a subset of the user queries. Before each web search,

we clear the entire browsing history, cache, and cookies of the browser to ensure that the

current search is not affected by previous searches, and we copy-and-paste the exact user

queries into Google. Note that some queries may not contain the keyword firefox. To ensure

www.manaraa.com

52

Ta
bl

e
4.

3:
Sa

m
pl

e
of

qu
er

ie
s

fr
om

th
e

Fi
re

fo
x

he
lp

fo
ru

m

Q
ue

ry
Pr

ef
er

en
ce

(1
)H

ow
to

ch
an

ge
pe

rm
an

en
tly

th
e

Se
ar

ch
E

ng
in

e?
ke

yw
or

d.
U

R
L

(2
)I

s
th

er
e

an
ab

ou
t:c

on
fig

en
tr

y
to

to
gg

le
Se

ar
ch

E
xa

m
pl

e.
co

m
br

ow
se

r.s
ea

rc
h.

co
nt

ex
t.l

oa
dI

nB
ac

kg
ro

un
d

fo
rs

el
ec

te
d

te
xt

au
to

m
at

ic
al

ly
sw

itc
hi

ng
to

th
e

ta
b

it
op

en
s?

(3
)D

oe
s

th
is

si
gn

if
y

co
m

pr
om

is
ed

ht
tp

s
pa

ge
s

th
at

Iv
is

it?
ne

tw
or

k.
w

eb
so

ck
et

.a
llo

w
In

se
cu

re
Fr

om
H

T
T

PS
(4

)H
ow

do
Ip

re
ve

nt
th

e
w

ar
ni

ng
fo

rc
lo

si
ng

m
ul

tip
le

ta
bs

br
ow

se
r.t

ab
s.

w
ar

nO
nC

lo
se

O
th

er
Ta

bs
at

on
ce

fr
om

di
sp

la
yi

ng
?

(5
)H

ow
do

Ie
na

bl
e

pi
nc

h
to

zo
om

?
(a

)b
ro

w
se

r.g
es

tu
re

.p
in

ch
.in

,(
b)

br
ow

se
r.g

es
tu

re
.p

in
ch

.in
.s

hi
ft

(c
)b

ro
w

se
r.g

es
tu

re
.p

in
ch

.o
ut

,(
d)

br
ow

se
r.g

es
tu

re
.p

in
ch

.o
ut

.s
hi

ft
(6

)d
is

ab
le

te
le

m
et

ry
pr

om
pt

to
ol

ki
t.t

el
em

et
ry

.p
ro

m
pt

ed

www.manaraa.com

53

a fair comparison, we append keyword firefox to such queries to make them relevant to our

object of analysis. We discard the web pages where we obtained our original solution.

4.2.4 Threats to Validity

We describe the main threat to validity of our experiments. First, we built our PrefFinder

just on two systems (Firefox and LibreOffice). But we used real user queries and we be-

lieve that this is a representative highly configurable system for which PrefFinder would

be useful. We need to examine more wide-ranged systems to justify that our approach will

generalize. Second, some of the preference solutions proposed by the forum follow-up

posts are not verifiable; we took them as the ground truth. In addition, we acknowledge

that there exist other sophisticated NLP and IR techniques in the literature that may produce

better splitting and ranking results, that we did not explore. For our web search results, we

removed the website on which we obtained the original query oracle. This biases the re-

sults, but since we obtained these from the Firefox website, we thought that would be an

unfair advantage for web search and assume that this tool would be used when such a utility

such as the Firefox help forum is not immediately available (i.e. when a user is offline).

4.3 Results

In this section, we first present the comparison results of different identifier splitting algo-

rithms, and then discuss the PrefFinder results.

4.3.1 RQ1 Identifier Splitting

To answer RQ1, we analyze different identifier splitting algorithms separately. As dis-

cussed in section 4.1.3, our identifier splitting algorithm has two steps. In the first step,

it splits the camel case identifiers with the Camel Case splitting algorithm. In the second

www.manaraa.com

54

step, it passes the resulting identifiers to one of the same case splitting algorithms (Greedy,

Backward, DP) for further splits. We analyze each step individually.

Table 4.4 summarizes five scenarios to illustrate the impact of each algorithm. The first

row contains the original identifiers retrieved from Firefox preference names and the second

row contains the manual oracle corresponding to each identifier. The following rows show

the splitting results by each algorithm . In the first column example, the camel case detects

camel case letters in the original identifier SOAPHeaderBlock, and thus makes the correct

splits. Since the resulting identifiers SOAP, Header, and Block are soft words, none of the

same case splitting algorithms have any effect. As a result, camel case is sufficient for this

example. The second example is one in which the camel case algorithm correctly splits

the word, and all three of the other algorithms splits this further into an incorrect answer.

The word Sidebar was left as a single word by our human oracle, who deems this a valid

programming word. This type of false negative, may be overcome with good synonym

databases in the search phase. The other three examples have mixed results. In the case

of printsettings, the camel case algorithm fails (this is expected), but the other algorithms,

except for greedy found the correct split. The greedy algorithm works forward to find the

longest word, so it made its first split on prints. In the case of pagethumbnails, only the

backward algorithm provides the correct split. It looks for the longest word starting at the

end of the word. Finally in the last example composer2d, both the greedy and DP approach

are correct, while the backwards algorithm fails.

Table 4.5, presents the overall results of our splitting. The first two columns show the

number and percentage of correct splits made on the 567 identifiers that the oracle deemed

should be split. Camel Case splits correctly 67.6% of the time. However, many identifiers

require additional splits. As can be seen, the other algorithms have higher correctness

percentages. The backward algorithm, is correct 88.9% of the time, while the next best is

the Greedy at 83.8% of the time. The last two columns show the number and percentages

www.manaraa.com

55

of false splits made on the 1027 identifiers that our oracle deemed were not splittable.

Camel case makes the smallest number of false splits (0.4%). The Backward algorithm

makes only 6.7%, while the algorithm that had the highest number of false splits is the

DP (16.2%). Table 4.6 shows the percentage of correct splits if we use all of the 1594

identifiers together. As can be seen, Backward has the highest percentage overall (91.7%).

Interestingly, Camel Case (88.2%) outperforms both Greedy (86.4%) and DP (83.8%) when

we examine all of the data.

Table4.7 shows the five run times for each algorithm across all of the 1594 distinct iden-

tifiers. As can be seen, running Camel Case alone only takes 0.04 seconds to complete on

average. The execution time for Greedy (9.17s) and Backward (9.31s) are about the same

with small standard deviations. However, DP takes 231.531s to finish on average, which

is about 25 times slower than Greedy and Backward. This is because for each identifier,

DP builds two n × n tables (T and D) to keep track of the recurrence relations and the

divider positions. It is possible that we can improve this slightly through a more efficient

implementation, however the runtime complexity of the algorithm means that it will not be

as completive as the other two.

RQ1 Summary We summarize our findings for RQ1 by concluding that on our prototype

system, the combination of Camel Case with the Backward split is the most effective ap-

proach. Adding the Backward split incurs some additional runtime, but it is small. The

most expensive algorithm and worst performer is the DP. Camel Case does surprisingly

well overall, since it doesn’t suffer from a high number of false splits which occur in both

the Greedy and DP algorithms. We use the Backward algorithm to answer our next research

question.

www.manaraa.com

56

With WN Without WN

0
10
0

20
0

30
0

40
0

Returned Suggestions
N

u
m

b
e

r
o

f
S

u
g

g
e

st
io

n
s

With WN Without WN

0
20

40
60

80

Ranking Positions

R
an
k

Figure 4.3: Total number of returned suggestions (left) and the associated ranking positions
(right) for the successful queries

4.3.2 RQ2 PrefFinder Suggestions

To answer RQ2, we chose to examine two scenarios. One group uses WordNet to expand

the set of words in the user query with synonyms, while the other group has WordNet

turned off. PrefFinder found the correct solution for 73 queries in the WordNet group and

72 when WordNet was not used. We show the data from this question in two box plots (

Figure 4.3).

The left graph shows data on the number of returned suggestions for each of the queries

that was correctly found (the overall data which includes the failed queries is similar). As

can be seen there is a wide range of values for both groups. Some queries have only a

few suggestions, while a few have as many as several hundred responses. However, the

overall trend shows that the trend is towards smaller numbers with the medians under 100.

It is interesting to see that in the WordNet group (left plot in each graph), there are more

suggestions returned. Since the synonyms expand the set of keywords this increases the

probability of more solutions having non-negative rankings. However, it also means that

PrefFinder is likely to match other irrelevant results as well which introduces noise.

www.manaraa.com

57

Thus, we further examine the ranking positions of working solutions to analyze the

impact of noise. The box plot on the right shows the ranking positions for both sets of

queries. There is no discernible difference between the group with and without WordNet

(with medians around 10 and outliers as high as 80). Considering that there are almost 1900

preferences, we believe that this is a reduction in the work a user would need to perform

without PrefFinder. As shown at the bottom of Table 4.7, it takes WordNet 0.31s on average

to extract synonyms for all 100 user queries, which is about 3.1ms for each query.

We examine the success rates of our queries further by using adopting the top 10 cut-off

point criteria for web searches from [9]. This states that a search is successful if the system

finds the answer within the top 10 entries (denoted as S@10). This claim is based on the

fact that the top 10 search results typically appear on the first page of a web search and users

are likely to look through only the top 10 entries before issuing a new query. Figure 4.4

presents the number of queries, for which PrefFinder is able to find a working solution, for

various criteria. As we can see, when only considering the top 10 search results (S@10),

PrefFinder successfully finds solutions for 40 user queries in the WordNet group and 38

queries for the group without WordNet. About 70% of the solutions are found within the

top 50 (S@50) for both groups. Here we see that WordNet does slightly worse at the lower

ranks, but we do not believe it is significant.

We next examine more closely a subset of the queries against a web search (as described

in the study). We chose to examine the 27 queries that we found with WordNet within the

top 5 choices. As mentioned, we ignored the oracle webpage (which is usually the first

page to be returned in our search). We manually examined each page and counted the

number of screens a user has to scroll through to read that whole page (measured as the

number of spacebars it takes to reach the end of the page). Figure 4.5 shows the ranking

positions of the PrefFinder queries versus the web queries. PrefFinder finds more working

solutions than the web searches for all the ranking positions except the top position, where

www.manaraa.com

58

7

26

38

50

69
72

7

27

40

50

70
73

0"

10"

20"

30"

40"

50"

60"

70"

80"

S@1 S@5 S@10 S@20 S@50 All

N
um

er
 o

f U
se

r
Q

ue
ri

es

Position

Without WordNet

With WordNet

Figure 4.4: Rank positions for successful queries

web searches find 15 working solutions and PrefFinder finds 7. There are also 7 queries

where the web search failed to find the query within the top 5 results. When we average

the number of pages that a user has to potentially examine (versus only a single preference

name), the web searches have an average of 8.2 screens for this set of queries. In addition

the web pages may have links (we assume that the user does not leave the page). From this

small study we conclude that PrefFinder is “competitive“. Clearly if a forum such as the

Firefox forum exists and the user has online access, this is a viable option, but they will

have to sort through a large amount of text to find the answer. Future work will evaluate

the human aspects of PrefFinder.

RQ2 Summary We conclude from this data that PrefFinder has potential to extract the

correct preferences for real user queries. The main challenge moving forward will be to

improve our ranking and splitting algorithms and to improve the ranking of correct so-

www.manaraa.com

59

7
8

5

2

5

0

15

3

1 1
0

7

0"

2"

4"

6"

8"

10"

12"

14"

16"

1 2 3 4 5 Not Found

N
um

be
r

Ranking Positions

PrefFinder

Web Search

Figure 4.5: PrefFinder vs. a web query

lutions. Given that there is little time overhead and that the location of the solution in the

rankings is the same, and that WordNet returned one additional result, we don’t believe that

this hurts PrefFinder, but a deeper analysis is needed to determine when it will be beneficial

to use.

4.4 Summary

In this chapter we have presented PrefFinder, a natural language based querying framework

to recommend and customize configurable options. We have evaluated PrefFinder and

several variants of our parsing algorithms to improve matches in this context. Using 100

queries obtained from an online forum, we determine that using a backward search during

word splitting, combined with a synonym database, achieves the best results. The correct

configuration option is found 50 percent of the time within the top 20 choices, and 73

www.manaraa.com

60

percent of the time overall. In a comparison against a standard web search, we show that

PrefFinder is competitive in finding the answer, but at a potentially lower cost.

www.manaraa.com

61

Ta
bl

e
4.

4:
E

xa
m

pl
es

of
th

e
re

su
lts

of
th

e
di

ff
er

en
ts

pl
itt

in
g

al
go

ri
th

m
s

Id
en

tifi
er

SO
A

PH
ea

de
rB

lo
ck

ac
tiv

e
Si

de
ba

r
pr

in
ts

et
tin

gs
pa

ge
th

um
bn

ai
ls

co
m

po
se

r2
d

O
ra

cl
e

SO
A

P
H

ea
de

rB
lo

ck
ac

tiv
e

Si
de

ba
r

pr
in

ts
et

tin
gs

pa
ge

th
um

bn
ai

ls
co

m
po

se
r2

d
C

am
el

C
as

e
SO

A
P

H
ea

de
rB

lo
ck

X
ac

tiv
e

Si
de

ba
r

X
pr

in
ts

et
tin

gs
×

pa
ge

th
um

bn
ai

ls
×

co
m

po
se

r2
d
×

G
re

ed
y

SO
A

P
H

ea
de

rB
lo

ck
X

ac
tiv

e
Si

de
ba

r
×

pr
in

ts
et

ti
n

gs
×

pa
ge

th
um

bn
ai

ls
×

co
m

po
se

r2
d

X
B

ac
kw

ar
d

SO
A

P
H

ea
de

rB
lo

ck
X

ac
tiv

e
Si

de
ba

r
×

pr
in

ts
et

tin
gs

X
pa

ge
th

um
bn

ai
ls

X
co

m
po

se
r2

d
×

D
P

SO
A

P
H

ea
de

rB
lo

ck
X

ac
tiv

e
Si

de
ba

r
×

pr
in

ts
et

tin
gs

X
pa

ge
th

um
bn

ai
ls
×

co
m

po
se

r2
d

X

www.manaraa.com

62

Table 4.5: Results of splitting on the 567 identifiers which should be split

Algorithm Correct Pct.(%) False Splits Pct.(%)
Camel Case 383/567 67.6 4/1027 0.4
Greedy 482/567 85.0 132/1027 12.9
Backward 504/567 88.9 69/1027 6.7
DP 475/567 83.8 166/1027 16.2

Table 4.6: Comparing splitting quality against the human oracle on all distinct identifiers

Algorithm Correct Pct.(%)
Camel Case 1406/1594 88.2%
Greedy 1377/1594 86.4%
Backward 1462/1594 91.7%
DP 1336/1594 83.8%

Table 4.7: Time to split 1594 distinct identifiers (top) and to extract synonyms from Word-
Net for 100 user queries (bottom)

Run 1 2 3 4 5 Avg. Std.
Time to split 1594 distinct identifiers (sec)
Camel Case 0.05 0.04 0.04 0.04 0.04 0.04 0.00
Greedy 10.01 8.97 8.98 8.94 8.94 9.17 0.47
Backward 10.09 9.13 9.15 9.10 9.10 9.31 0.43
DP 248.17 232.93 226.62 225.11 224.82 231.53 9.86
Time to extract synonyms from WordNet for words in 100 user queries (sec)
WordNet 0.19 0.31 0.41 0.27 0.37 0.31 0.09

www.manaraa.com

63

Chapter 5

Conclusions and Future Work

In this thesis we have presented an analysis of configurability in real world software sys-

tems to evaluate the complexity that configurability adds for developers and testers and

built a natural language based querying framework, PrefFinder, to identify configurable

options.

For the analysis, we have studied three highly-configurable software systems. We

have shown that our open source and industrial applications all have similar mechanisms

for maintaining and modifying configuration options and presented an abstraction of this

mechanism. We also see that there is no single (easily available) ground truth to determine

the full possible configuration space. To this end we recommend merging multiple sources,

developing cross-language analysis tools and providing traceability between the different

configuration layers. We have also seen that the dynamic behavior can be difficult to under-

stand, therefore we need to be cognizant of the lifecycle of the application to understand

our exact configuration state during debugging. In order to address preference recom-

mendation and customization issues for large scale highly-configurable software systems,

we developed PrefFinder, which uses several splitting algorithms informed by databases

of stopwords, and dictionaries of synonyms. We evaluated PrefFinder using only camel

www.manaraa.com

64

case splitting, and with several additional splitting algorithms. Our best results, first use

camel case followed by a backward splitting algorithm. In our analysis of a set of 100 user

queries, PrefFinder found the oracle solution within the top 10 choices, 40 percent of the

time, within the top 20 choices percent of the time, and 73 percent overall. When com-

pared with a web search we show that PrefFinder is competitive in finding the answer, at a

potentially lower cost.

In future work we plan to implement some configuration merging techniques, and trace-

ability links between the various layers. We also plan to examine a larger variety of highly-

configurable systems with larger evaluation to understand if the same model holds. In

addition, we plan to refine the algorithms for splitting and ranking to improve our overall

matching. We will also evaluate the ability to automatically set the values of options once

discovered and to perform human studies. Finally, we plan to connect PrefFinder with some

existing analysis tools and to build prototypes for additional configurable systems such as

LibreOffice.

www.manaraa.com

65

Bibliography

[1] Computer acronyms list. http://www.francesfarmersrevenge.com/

stuff/archive/oldnews2/computeracronyms.htm.

[2] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and

Thomas Zimmermann. What makes a good bug report? In International Symposium

on Foundations of Software Engineering, FSE, pages 308–318, 2008.

[3] David Binkley and Dawn Lawrie. Development: Information retrieval applications.

In Encyclopedia of Software Engineering, pages 231–242. 2010.

[4] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Information

needs in bug reports: improving cooperation between developers and users. In Con-

ference on Computer Supported Cooperative Work, CSCW, pages 301–310, 2010.

[5] J. Clause and A. Orso. A Technique for Enabling and Supporting Debugging of Field

Failures. In International Conference on Software Engineering, ICSE, pages 261–

270, Minneapolis, Minnesota, May 2007.

[6] Jane Cleland-Huang, Jane Huffman Hayes, and J. M. Domel. Model-based traceabil-

ity. In ICSE Workshop on Traceability in Emerging Forms of Software Engineering,

TEFSE, pages 6–10, 2009.

http://www.francesfarmersrevenge.com/stuff/archive/oldnews2/computeracronyms.htm
http://www.francesfarmersrevenge.com/stuff/archive/oldnews2/computeracronyms.htm

www.manaraa.com

66

[7] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing interaction test

suites for highly-configurable systems in the presence of constraints: A greedy ap-

proach. IEEE Transactions on Software Engineering, 34(5):633–650, 2008.

[8] Myra B. Cohen, Joshua Snyder, and Gregg Rothermel. Testing across configura-

tions: implications for combinatorial testing. SIGSOFT Software Engineering Notes,

31(6):1–9, 2006.

[9] Nick Craswell and David Hawking. Overview of the trec 2004 web track. In TREC,

2004.

[10] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and Denys Poshyvanyk. Enhancing

software traceability by automatically expanding corpora with relevant documenta-

tion. In International Conference on Software Maintenance, ICSM, pages 22–28, Sep

2013.

[11] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher, Jane Cleland-

Huang, and Patrick Heymans. Feature model extraction from large collections of

informal product descriptions. In The Joint Meeting on Foundations of Software En-

gineering, ESEC/FSE, pages 290–300, 2013.

[12] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano Antoniol. Can better

identifier splitting techniques help feature location? In International Conference on

Program Comprehension (ICPC), pages 11–20, 2011.

[13] LibreOffice. http://libreoffice.org/, 2013.

[14] Emine Dumlu, Cemal Yilmaz, Myra B. Cohen, and Adam Porter. Feedback driven

adaptive combinatorial testing. In International Symposium on Software Testing and

Analysis, ISSTA, pages 243–253, 2011.

http://libreoffice.org/

www.manaraa.com

67

[15] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Mining source code to automat-

ically split identifiers for software analysis. In International Working Conference on

Mining Software Repositories, MSR, pages 71–80, 2009.

[16] Henry Feild, David Binkley, and Dawn Lawrie. An empirical comparison of tech-

niques for extracting concept abbreviations from identifiers. In In Proceedings of

IASTED International Conference on Software Engineering and Applications (SEA

2006, 2006.

[17] BradyJ. Garvin, Myra B. Cohen, and Matthew B. Dwyer. Failure avoidance in con-

figurable systems through feature locality. In Javier Camára, Rogério Lemos, Carlo

Ghezzi, and Antónia Lopes, editors, Assurances for Self-Adaptive Systems, volume

7740 of Lecture Notes in Computer Science, pages 266–296. Springer Berlin Heidel-

berg, 2013.

[18] Ispell. http://www.gnu.org/software/ispell/.

[19] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed, P. Grunbacher,

and G. Antoniol. The quest for ubiquity: A roadmap for software and systems trace-

ability research. International Requirements Engineering Conference, RE, 0:71–80,

2012.

[20] Steffen Herbold, Jens Grabowski, Stephan Waack, and Uwe Bünting. Improved bug

reporting and reproduction through non-intrusive GUI usage monitoring and auto-

mated replaying. In International Conference on Software Testing, Verification and

Validation Workshops, ICSTW, pages 232–241, 2011.

[21] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova, Lori

Pollock, and K. Vijay-Shanker. AMAP: Automatically mining abbreviation expan-

http://www.gnu.org/software/ispell/

www.manaraa.com

68

sions in programs to enhance software maintenance tools. In International Working

Conference on Mining Software Repositories (MSR), pages 79–88, 2008.

[22] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker. Automatically mining

software-based semantically-similar words from comment-code mappings. In Work-

ing Conference on Mining Software Repositories, may 2013.

[23] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson. Configurations every-

where: Implications for testing and debugging in practice. In International Confer-

ence on Software Engineering Companion Volume, Software Engineering in Practice,

SEIP, pages 215–224, 2014.

[24] Wei Jin and Alessandro Orso. BugRedux: reproducing field failures for in-house

debugging. In International Conference on Software Engineering, ICSE, pages 474–

484, 2012.

[25] Luis C. Lamb, Waraporn Jirapanthong, and Andrea Zisman. Formalizing traceability

relations for product lines. In ICSE Workshop on Traceability in Emerging Forms of

Software Engineering, TEFSE, pages 42–45, 2011.

[26] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recov-

ering traceability links in software artifact management systems using information

retrieval methods. ACM Transactions on Software Engineering and Methodology,

16(4), September 2007.

[27] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recov-

ering traceability links in software artifact management systems using information

retrieval methods. ACM Transactions on Software Engineering and Methodology,

16(4), September 2007.

www.manaraa.com

69

[28] Jonathan I. Maletic and Michael L. Collard. TQL: A query language to support trace-

ability. In ICSE Workshop on Traceability in Emerging Forms of Software Engineer-

ing, TEFSE, pages 16–20, 2009.

[29] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[30] Andrian Marcus, Xinrong Xie, and Denys Poshyvanyk. When and how to visualize

traceability links? In ICSE Workshop on Traceability in Emerging Forms of Software

Engineering, TEFSE, pages 56–61, 2005.

[31] C. McMillan, M. Grechanik, D., C. Fu, and Q. Xie. Exemplar: A source code search

engine for finding highly relevant applications. IEEE Transactions on Software Engi-

neering, 38(5):1069–1087, September 2012.

[32] George A. Miller. WordNet: A lexical database for english. Communications of the

ACM, 38:39–41, 1995.

[33] Firefox support forum. https://support.mozilla.org/en-US/

questions/.

[34] XPCOM. https://developer.mozilla.org/en-US/docs/XPCOM.

[35] XUL. https://developer.mozilla.org/en-US/docs/XUL.

[36] Firefox. http://www.mozilla.org/en-US/firefox/, 2013.

[37] Ohloh. http://www.ohloh.net/, 2013.

[38] Annibale Panichella, Collin McMillan, Evan Moritz, Davide Palmieri, Rocco Oliveto,

Denys Poshyvanyk, and Andrea De Lucia. When and how using structural informa-

https://support.mozilla.org/en-US/questions/
https://support.mozilla.org/en-US/questions/
https://developer.mozilla.org/en-US/docs/XPCOM
https://developer.mozilla.org/en-US/docs/XUL
http://www.mozilla.org/en-US/firefox/
http://www.ohloh.net/

www.manaraa.com

70

tion to improve IR-Based traceability recovery. In European Conference on Software

Maintenance and Reengineering, CSMR, pages 199–208, 2013.

[39] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware regression testing:

An empirical study of sampling and prioritization. In International Symposium on

Software Testing and Analysis, ISSTA, pages 75–85, July 2008.

[40] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware regression testing:

an empirical study of sampling and prioritization. In International Symposium On

Software Testing and Analysis, pages 75–86, 2008.

[41] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction regression testing:

A study of test case generation and prioritization. In International Conference on

Software Maintenance, ICSM, pages 255–264, Oct 2007.

[42] Xiao Qu, Mithun Acharya, and Brian Robinson. Configuration selection using code

change impact analysis for regression testing. International Conference on Software

Maintenance, ICSM, 0:129–138, 2012.

[43] Ariel Rabkin and Randy Katz. Precomputing possible configuration error diagnoses.

In International Conference on Automated Software Engineering (ASE), pages 193–

202, nov 2011.

[44] Ariel Rabkin and Randy Katz. Static extraction of program configuration options.

In International Conference on Software Engineering (ICSE), pages 131–140, may

2011.

[45] Ariel Rabkin and Randy Katz. Static extraction of program configuration options. In

International Conference on Software Engineering, ICSE, pages 131–140, 2011.

www.manaraa.com

71

[46] Ariel Rabkin and Randy H. Katz. Precomputing possible configuration error diag-

noses. In Automated Software Engineering, pages 193–202, 2011.

[47] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical study of re-

ported bugs in server software with implications for automated bug diagnosis. In

International Conference on Software Engineering, ICSE, pages 485–494, 2010.

[48] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic

text retrieval. In Information Processing and Management, pages 513–523, 1988.

[49] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker.

Using natural language program analysis to locate and understand action-oriented

concerns. In International Conference on Aspect-oriented Software Development,

pages 212–224, 2007.

[50] Steven S. Skiena. The Algorithm Design Manual. Springer-Verlag New York, Inc.,

New York, NY, USA, 1998.

[51] Charles Song, Adam Porter, and Jeffrey S. Foster. iTree: efficiently discovering high-

coverage configurations using interaction trees. In The International Conference on

Software Engineering, ICSE, pages 903–913, 2012.

[52] Kathryn T. Stolee and Sebastian Elbaum. Toward semantic search via SMT solver. In

International Symposium on the Foundations of Software Engineering (FSE), pages

25:1–25:4, 2012.

[53] The Document Foundation. http://blog.documentfoundation.org/

2011/09/28/, 2011.

http://blog.documentfoundation.org/2011/09/28/
http://blog.documentfoundation.org/2011/09/28/

www.manaraa.com

72

[54] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. Generating

range fixes for software configuration. In International Conference on Software En-

gineering, ICSE 2012, pages 58–68, 2012.

[55] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient fault characteri-

zation in complex configuration spaces. IEEE Transactions on Software Engineering,

31(1):20–34, Jan 2006.

[56] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram,

and Shankar Pasupathy. An empirical study on configuration errors in commercial

and open source systems. In Symposium on Operating Systems Principles, SOSP,

pages 159–172, 2011.

[57] Sai Zhang and Michael D. Ernst. Automated diagnosis of software configuration

errors. In International Conference on Software Engineering, ICSE, pages 312–321,

2013.

[58] Sai Zhang and Michael D. Ernst. Which configuration option should i change? In

International Conference on Software Engineering, ICSE, 2014.

[59] Thomas Zimmermann, Nachiappan Nagappan, Philip J. Guo, and Brendan Murphy.

Characterizing and predicting which bugs get reopened. In International Conference

on Software Engineering, ICSE, pages 1074–1083, 2012.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 8-1-2014

	IMPROVING PREFERENCE RECOMMENDATION AND CUSTOMIZATION IN REAL WORLD HIGHLY CONFIGURABLE SOFTWARE SYSTEMS
	Dongpu Jin

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Background
	Configurable Software Systems
	Natural Language Processing and Information Retrieval

	Related Work

	An Analysis of Configurability in Real World Systems
	Motivation
	Case Study
	Software Subjects Studied
	Study Design
	Threats to Validity

	Study Results
	RQ1 Configuration Complexity
	Additional Complexity for ABBc

	RQ2 Configuration Access
	RQ3 Configuration Synchronization

	Discussion
	Summary

	PrefFinder
	Overview
	Application View
	Parser
	Preference Name Parsing
	Camel Case Splitting
	Same Case Splitting

	Query Parsing
	Ranker

	Case Study
	Object of Analysis
	Study Setup and Method: RQ1
	Study Setup and Method: RQ2
	Threats to Validity

	Results
	RQ1 Identifier Splitting
	RQ2 PrefFinder Suggestions

	Summary

	Conclusions and Future Work
	Bibliography

